MINI REVIEW article
Front. Cell. Neurosci.
Sec. Cellular Neuropathology
Volume 19 - 2025 | doi: 10.3389/fncel.2025.1590002
This article is part of the Research TopicNeuro-immune interaction in diseaseView all articles
Bridging the brain and gut: neuroimmune mechanisms of neuroinflammation and therapeutic insights
Provisionally accepted- Max Planck Institute for Human Development, Berlin, Germany
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The central nervous system (CNS) and the immune system are profoundly interconnected, engaging in a continuous dynamic exchange that regulates homeostasis, immune surveillance, and responses to injury. These interactions occur through diverse mechanisms, ranging from microglial activation and cytokine signaling to peripheral immune cell infiltration. When disrupted, this balance contributes to neurodegenerative processes, affecting cognitive function and neuronal survival. This mini-review examines the cellular and molecular foundations of neuroimmune communication, focusing on how neuroimmune interactions influence the onset and progression of neurodegenerative disorders such as Alzheimer’s disease. Key mechanisms include barrier systems, gut-brain interactions, and circadian rhythm regulation, all playing a crucial role in modulating neuroinflammatory responses. The gut-brain axis plays a pivotal role in modulating CNS function, as alterations in gut microbiota composition can trigger neuroinflammatory pathways, affect systemic immunity, and influence disease susceptibility. Both innate and adaptive immune responses are instrumental in shaping disease trajectory, highlighting the complex interplay between systemic and neural immune components. The blood-brain barrier and glymphatic system modulate immune cell trafficking and waste clearance, influencing CNS pathology. Additionally, circadian rhythm and sleep patterns regulate neuroimmune balance, with disruptions exacerbating inflammation and neurodegeneration. Neuroimmune crosstalk manifests through a spectrum of pathways, each capable of either promoting resilience or accelerating neurodegeneration. By unraveling these connections, we can gain new insights into potential strategies to modulate immune responses and restore homeostasis. This investigation underlines the necessity of integrative approaches that target immune modulation, microbiota regulation, and circadian alignment to mitigate neurodegenerative disease progression and improve therapeutic outcomes.
Keywords: Neuroinflammation, glial cells, Neurons, immune cells, Cytokines, gut-brain interactions, Neurodegenerative Diseases, AD
Received: 08 Mar 2025; Accepted: 21 May 2025.
Copyright: © 2025 Müller and Di Benedetto. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Ludmila Müller, Max Planck Institute for Human Development, Berlin, Germany
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.