REVIEW article
Front. Cell. Neurosci.
Sec. Non-Neuronal Cells
Advances in Astrocytic Calcium Signaling Research
Provisionally accepted- 1Qinghai University School of Medicine, Xining, China
- 2Gansu University of Chinese Medicine, Lanzhou, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Astrocytes are the most abundant glial cells in the central nervous system. They detect neuronal activity through Ca2+ signals and thereby regulate synaptic plasticity, integrate neuronal information, and maintain extracellular homeostasis. Growing evidence indicates that aberrant astrocytic Ca2+ signaling is an important pathological factor in the onset and progression of many neurological disorders. In this review, we systematically summarize the sources, classifications, detection methods, and functional significance of astrocyte Ca2+ signaling, with the aim of improving understanding of astrocyte function and providing new perspectives and rationale for therapeutic strategies targeting related diseases.
Keywords: astrocyte calcium signaling, review, astrocyte, Calcium, Calcium Signaling
Received: 07 Oct 2025; Accepted: 05 Nov 2025.
Copyright: © 2025 Chen, Ye, Jia, Long, Dou and Yan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Xingke Yan, xxxbbb2028@163.com
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
