- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
Many studies have demonstrated that smoking behavior is influenced by both genetic and environmental factors, and that these influences can change over time and during development (Swan et al., 1996; Han et al., 1999; Koopmans et al., 1999; Maes et al., 1999; Stallings et al., 1999; True et al., 1999; Kendler et al., 2000; McGue et al., 2000; Hopfer et al., 2001, 2003; Rhee et al., 2003). For example, most studies comparing heritability of age of initiation of smoking and regular use patterns suggest that age of initiation is more likely influenced by environmental factors, while progression to regular use and addiction are more heritable (Han et al., 1999; Koopmans et al., 1999; Stallings et al., 1999; McGue et al., 2000; Rhee et al., 2003). Until recently, most studies of smoking behaviors aimed at understanding mechanisms have been forced to examine genetic and environmental influences separately, because little was known about genetic features that were modified by environmental factors. Within recent years, two major areas of research have exploded to provide possible novel mechanisms that may help explain why behavioral disorders such as substance dependence “runs in families” beyond the separate entities of environmental exposure and common genes. The first is epigenetic reprogramming, whereby long-lasting changes to the DNA such as methylation on CpG islands (Kim et al., 2009) and histone tail modifications (Berger, 2007) are conferred upon environmental exposures. The second is the involvement of ncRNAs in regulation of gene expression (Li and van der Vaart, 2011), and the topic of the review article by Maccani and Knopik (2012).
Despite decreasing rates of smoking over the last several decades, maternal smoking during pregnancy (MSP) remains a major public health problem (Mathews, 2001). MSP has been associated with many behavioral problems including irritability in neonatal infants (Stroud et al., 2009), attention behavioral problems in children (Fried et al., 1992), disruptive behaviors in teenagers (Wakschlag et al., 2011), and increased risk of tobacco dependence in young adults (Buka et al., 2003). Furthermore, secondhand smoke (SHS) exposure during childhood has been associated with adverse behavioral and cognitive outcomes (reviewed in Niaura et al., 2001; Shenassa et al., 2003; Herrmann et al., 2008). Animal studies provide more evidence that in utero exposure to nicotine directly affects offspring behaviors. For example, mice exposed to nicotine or alcohol in utero showed impairment in anxiety and learning behaviors (Li and Wang, 2004). These findings have been replicated in an elegant study of nicotine exposure throughout early development where mice were allowed to orally self-administer nicotine during gestation and lactation. Exposed pups showed dramatic differences for multiple behaviors including nicotine self-administration, social interactions, and performance on a forced swim test (Chistyakov et al., 2010). However, as reviewed recently by Winzer-Serhan (2008), other animal studies examining the effects of nicotine, which does not contain all of the ingredients in tobacco, have been contradictory. As discussed by Maccani and Knopik, specific miRNAs were downregulated in placental cell lines exposed to nicotine and benzo[a]pyrene, but different miRNAs were dysregulated in lung and airway epithelium tissue. In general, the few studies examining the effects of various aspects of cigarette smoking on miRNA expression have revealed that responses are likely to be highly complex, with tissue, temporal, and type of exposure leading to differential responses.
As we consider possible effects of environmental exposure on long-lasting biological mechanisms such as epigenetic reprogramming and ncRNA regulation, it is important to remember that smoking may exert its effects in different ways throughout one’s life course, including in utero, early childhood, adolescence, young adulthood, and adulthood. Most of the mechanistic work to date has examined in utero smoking exposure, but there is evidence for a continuum of effect. Most smokers begin smoking during adolescence, and several studies have shown that earlier age of initiation is associated with increased risk for later dependence (Khuder et al., 1999; Lando et al., 1999; Hu et al., 2006; Palmer et al., 2009). Interestingly, there is a genetic example that associations between CHRN genes (encoding the nicotinic receptor subunit genes) and nicotine dependence, may differ between subjects who started smoking early and those with later onset (Schlaepfer et al., 2008; Weiss et al., 2008; Ducci et al., 2011; Hartz et al., in press). The association between CHRN genes and tobacco behaviors is one of the most widely replicated findings among substance abuse genetics (Amos et al., 2008; Bierut et al., 2008; Thorgeirsson et al., 2008, 2010; Saccone et al., 2010), so this developmental aspect is of high interest. These results suggest the possibility of a “critical period” during adolescence where environmental effects may have stronger effects on certain genetic mechanisms.
In addition, many animal studies have shown that the nicotinic acetylcholine receptors (nAChRs) are likely to be targets for nicotine’s effects during prenatal tobacco exposure. Numerous studies have shown upregulation of certain nAChR subtypes (e.g., α2β4-containing) in various brain regions following postnatal (Marks et al., 1992; Lain et al., 2005) and prenatal exposure (Navarro et al., 1989; Popke et al., 1997; Tizabi et al., 1997). These findings have been replicated in rats (Lv et al., 2008). However, the global nAChR response to nicotine is complex, because certain receptor subtypes (e.g., α6-containing) are downregulated specifically in dopaminergic brain regions (Chen et al., 2005). The nAChRs are ligand-gated ion channels containing a central cation pore that act as the primary target for nicotine and the endogenous agonist acetylcholine. nAChRs have been shown to activate release of dopamine, and are likely important in mediating the rewarding properties of abused drugs (Salminen et al., 2004; Gotti et al., 2006). More recently, work using a mouse model has shown that the effects of early nicotine exposure on later behaviors is “primarily due to the neuropharmacological effects of the drug and not due to effects of exposure on maternal behavior,” and that the nAChRs play a critical role in mediating these effects (Heath et al., 2010a,b). Therefore, the nAChRs represent a possible key modulator of how MSP has long-term behavioral effects on offspring in both human and animal studies. Given the strong genetic associations between the CHRN genes and smoking behaviors, possible miRNA binding sites within these genes might represent feasible targets for study and intervention in the future.
In conclusion, the role of ncRNA in smoking exposure responses is in its infancy. As reported by Maccani and Knopik, fewer than 10 studies have been conducted in this area to date, but it is a high priority topic so we can expect to see new studies published frequently. Most of these studies are likely to be conducted using cell lines and animal models. Since not all ncRNAs are conserved across mammals, it will be important to foster collaborations and cross-talk between basic science investigators and human geneticists and clinicians to integrate the knowledge for greatest potential impact for human health.
Acknowledgments
This work was supported by R01 AA017889, R21 DA026901, and P60 DA011015.
References
Amos, C. I., Wu, X., Broderick, P., Gorlov, I. P., Gu, J., Eisen, T., Dong, Q., Zhang, Q., Gu, X., Vijayakrishnan, J., Sullivan, K., Matakidou, A., Wang, Y., Mills, G., Doheny, K., Tsai, Y. Y., Chen, W. V., Shete, S., Spitz, M. R., and Houlston, R. S. (2008). Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat. Genet. 40, 616–622.
Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407–412.
Bierut, L. J., Stitzel, J. A., Wang, J. C., Hinrichs, A. L., Grucza, R. A., Xuei, X., Saccone, N. L., Saccone, S. F., Bertelsen, S., Fox, L., Horton, W. J., Breslau, N., Budde, J., Cloninger, C. R., Dick, D. M., Foroud, T., Hatsukami, D., Hesselbrock, V., Johnson, E. O., Kramer, J., Kuperman, S., Madden, P. A., Mayo, K., Nurnberger, J. Jr., Pomerleau, O., Porjesz, B., Reyes, O., Schuckit, M., Swan, G., Tischfield, J. A., Edenberg, H. J., Rice, J. P., and Goate, A. M. (2008). Variants in nicotinic receptors and risk for nicotine dependence. Am. J. Psychiatry 165, 1163–1171.
Buka, S. L., Shenassa, E. D., and Niaura, R. (2003). Elevated risk of tobacco dependence among offspring of mothers who smoked during pregnancy: a 30-year prospective study. Am. J. Psychiatry 160, 1978–1984.
Chen, H., Parker, S. L., Matta, S. G., and Sharp, B. M. (2005). Gestational nicotine exposure reduces nicotinic cholinergic receptor (nAChR) expression in dopaminergic brain regions of adolescent rats. Eur. J. Neurosci. 22, 380–388.
Chistyakov, V., Patkina, N., Tammimaki, A., Talka, R., Salminen, O., Belozertseva, I., Galankin, T., Tuominen, R., and Zvartau, E. (2010). Nicotine exposure throughout early development promotes nicotine self-administration in adolescent mice and induces long-lasting behavioural changes. Eur. J. Pharmacol. 640, 87–93.
Ducci, F., Kaakinen, M., Pouta, A., Hartikainen, A. L., Veijola, J., Isohanni, M., Charoen, P., Coin, L., Hoggart, C., Ekelund, J., Peltonen, L., Freimer, N., Elliott, P., Schumann, G., and Jarvelin, M. R. (2011). TTC12-ANKK1-DRD2 and CHRNA5-CHRNA3-CHRNB4 influence different pathways leading to smoking behavior from adolescence to mid-adulthood. Biol. Psychiatry 69, 650–660.
Fried, P. A., Watkinson, B., and Gray, R. (1992). A follow-up study of attentional behavior in 6-year-old children exposed prenatally to marihuana, cigarettes, and alcohol. Neurotoxicol. Teratol. 14, 299–311.
Gotti, C., Zoli, M., and Clementi, F. (2006). Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27, 482–491.
Han, C., Mcgue, M. K., and Iacono, W. G. (1999). Lifetime tobacco, alcohol and other substance use in adolescent Minnesota twins: univariate and multivariate behavioral genetic analyses. Addiction 94, 981–993.
Hartz, S. M., Short, S., Saccone, N. L., Culverhouse, R., Chen, L. S., Schwantes-An, T., Coon, H., Han, Y., Stephens, S. H., Sun, J., Chen, X., Ducci, F., Dueker, N., Franceschini, N., Frank, J., Geller, F., Guðbjartsson, D., Hansel, N., Jiang, C., Keskitalo-Vuokko, K., Liu, J., Lyytikäinen, L., Michel, M., Rawal, R., Rosenberger, A., Scheet, P., Shaffer, J. R., Teumer, A., Thompson, J. R., Vink, J. M., Vogelzangs, N., Wenzlaff, A., Wheeler, W., Xiangjun, X., Yang, B. Z., Aggen, S. H., Balmforth, A., Baumeister, S., Beaty, T., Bennett, S., Bergen, A., Boyd, H., Broms, U., Campbell, H., Chatterjee, N., Chen, J., Cheng, Y. C., Cichon, S., Couper, D., Cucca, F., Dick, D., Foroud, T., Furberg, H., Giegling, I., Gu, F., Hall, A. S., Hällfors, J., Han, S., Hartmann, A. M., Hayward, C., Heikkilä, K., Hewitt, J. K., Hottenga, J. J., Jensen, M., Jousilahti, P., Kaakinen, M., Kittner, S., Konte, B., Korhonen, T., Landi, M. T., Laatikainen, T., Leppert, M., Levy, S. M., Mathias, R., Mcneil, D. W., Medland, S., Montgomery, G., Muley, T., Murray, T., Nauck, M., North, K., Pergadia, M., Polasek, O., Ramos, E., Ripatti, S., Risch, A., Ruczinski, I., Rudan, I., Salomaa, V., Schlessinger, D., Styrkársdóttir, U., Terracciano, A., Uda, M., Willemsen, G., Wu, X., Abecasis, G., Barnes, K., Bickeböller, H., Boerwinkle, E., and Boomsma, D. I. (in press). Increased genetic vulnerability to smoking at CHRNA5 in early-onset smokers. Arch. Gen. Psychiatry.
Heath, C. J., Horst, N. K., and Picciotto, M. R. (2010a). Oral nicotine consumption does not affect maternal care or early development in mice but results in modest hyperactivity in adolescence. Physiol. Behav. 101, 764–769.
Heath, C. J., King, S. L., Gotti, C., Marks, M. J., and Picciotto, M. R. (2010b). Cortico-thalamic connectivity is vulnerable to nicotine exposure during early postnatal development through alpha4/beta2/alpha5 nicotinic acetylcholine receptors. Neuropsychopharmacology 35, 2324–2338.
Herrmann, M., King, K., and Weitzman, M. (2008). Prenatal tobacco smoke and postnatal secondhand smoke exposure and child neurodevelopment. Curr. Opin. Pediatr. 20, 184–190.
Hopfer, C. J., Crowley, T. J., and Hewitt, J. K. (2003). Review of twin and adoption studies of adolescent substance use. J. Am. Acad. Child Adolesc. Psychiatry 42, 710–719.
Hopfer, C. J., Stallings, M. C., and Hewitt, J. K. (2001). Common genetic and environmental vulnerability for alcohol and tobacco use in a volunteer sample of older female twins. J. Stud. Alcohol 62, 717–723.
Hu, M. C., Davies, M., and Kandel, D. B. (2006). Epidemiology and correlates of daily smoking and nicotine dependence among young adults in the United States. Am. J. Public Health 96, 299–308.
Kendler, K. S., Thornton, L. M., and Pedersen, N. L. (2000). Tobacco consumption in Swedish twins reared apart and reared together. Arch. Gen. Psychiatry 57, 886–892.
Khuder, S. A., Dayal, H. H., and Mutgi, A. B. (1999). Age at smoking onset and its effect on smoking cessation. Addict. Behav. 24, 673–677.
Kim, J. K., Samaranayake, M., and Pradhan, S. (2009). Epigenetic mechanisms in mammals. Cell. Mol. Life Sci. 66, 596–612.
Koopmans, J. R., Slutske, W. S., Heath, A. C., Neale, M. C., and Boomsma, D. I. (1999). The genetics of smoking initiation and quantity smoked in Dutch adolescent and young adult twins. Behav. Genet. 29, 383–393.
Lain, E., Penke, B., Delacourte, A., Gundisch, D., Schroder, H., and Witter, B. (2005). Effects of Abeta1-42 fibrils and of the tetrapeptide Pr-IIGL on the phosphorylation state of the tau-protein and on the alpha7 nicotinic acetylcholine receptor in vitro. Eur. J. Neurosci. 21, 879–888.
Lando, H. A., Thai, D. T., Murray, D. M., Robinson, L. A., Jeffery, R. W., Sherwood, N. E., and Hennrikus, D. J. (1999). Age of initiation, smoking patterns, and risk in a population of working adults. Prev. Med. 29, 590–598.
Li, M. D., and van der Vaart, A. D. (2011). MicroRNAs in addiction: adaptation’s middlemen? Mol. Psychiatry 16, 1159–1168.
Li, Y., and Wang, H. (2004). In utero exposure to tobacco and alcohol modifies neurobehavioral development in mice offspring: consideration a role of oxidative stress. Pharmacol. Res. 49, 467–473.
Lv, J., Mao, C., Zhu, L., Zhang, H., Pengpeng, H., Xu, F., Liu, Y., Zhang, L., and Xu, Z. (2008). The effect of prenatal nicotine on expression of nicotine receptor subunits in the fetal brain. Neurotoxicology 29, 722–726.
Maccani, M. A., and Knopik, V. S. (2012). Cigarette smoke exposure associated alterations to non-coding RNA. Front. Gene. 3:53. doi: 10.3389/fgene.2012.00053
Maes, H. H., Woodard, C. E., Murrelle, L., Meyer, J. M., Silberg, J. L., Hewitt, J. K., Rutter, M., Simonoff, E., Pickles, A., Carbonneau, R., Neale, M. C., and Eaves, L. J. (1999). Tobacco, alcohol and drug use in eight- to sixteen-year-old twins: the Virginia Twin Study of Adolescent Behavioral Development. J. Stud. Alcohol 60, 293–305.
Marks, M. J., Pauly, J. R., Gross, S. D., Deneris, E. S., Hermans-Borgmeyer, I., Heinemann, S. F., and Collins, A. C. (1992). Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci. 12, 2765–2784.
McGue, M., Elkins, I., and Iacono, W. G. (2000). Genetic and environmental influences on adolescent substance use and abuse. Am. J. Med. Genet. 96, 671–677.
Navarro, H. A., Seidler, F. J., Eylers, J. P., Baker, F. E., Dobbins, S. S., Lappi, S. E., and Slotkin, T. A. (1989). Effects of prenatal nicotine exposure on development of central and peripheral cholinergic neurotransmitter systems. Evidence for cholinergic trophic influences in developing brain. J. Pharmacol. Exp. Ther. 251, 894–900.
Niaura, R., Bock, B., Lloyd, E. E., Brown, R., Lipsitt, L. P., and Buka, S. (2001). Maternal transmission of nicotine dependence: psychiatric, neurocognitive and prenatal factors. Am. J. Addict. 10, 16–29.
Palmer, R. H., Young, S. E., Hopfer, C. J., Corley, R. P., Stallings, M. C., Crowley, T. J., and Hewitt, J. K. (2009). Developmental epidemiology of drug use and abuse in adolescence and young adulthood: evidence of generalized risk. Drug Alcohol Depend. 102, 78–87.
Popke, E. J., Tizabi, Y., Rahman, M. A., Nespor, S. M., and Grunberg, N. E. (1997). Prenatal exposure to nicotine: effects on prepulse inhibition and central nicotinic receptors. Pharmacol. Biochem. Behav. 58, 843–849.
Rhee, S. H., Hewitt, J. K., Young, S. E., Corley, R. P., Crowley, T. J., and Stallings, M. C. (2003). Genetic and environmental influences on substance initiation, use, and problem use in adolescents. Arch. Gen. Psychiatry 60, 1256–1264.
Saccone, N. L., Culverhouse, R. C., Schwantes-An, T. H., Cannon, D. S., Chen, X., Cichon, S., Giegling, I., Han, S., Han, Y., Keskitalo-Vuokko, K., Kong, X., Landi, M. T., Ma, J. Z., Short, S. E., Stephens, S. H., Stevens, V. L., Sun, L., Wang, Y., Wenzlaff, A. S., Aggen, S. H., Breslau, N., Broderick, P., Chatterjee, N., Chen, J., Heath, A. C., Heliovaara, M., Hoft, N. R., Hunter, D. J., Jensen, M. K., Martin, N. G., Montgomery, G. W., Niu, T., Payne, T. J., Peltonen, L., Pergadia, M. L., Rice, J. P., Sherva, R., Spitz, M. R., Sun, J., Wang, J. C., Weiss, R. B., Wheeler, W., Witt, S. H., Yang, B. Z., Caporaso, N. E., Ehringer, M. A., Eisen, T., Gapstur, S. M., Gelernter, J., Houlston, R., Kaprio, J., Kendler, K. S., Kraft, P., Leppert, M. F., Li, M. D., Madden, P. A., Nothen, M. M., Pillai, S., Rietschel, M., Rujescu, D., Schwartz, A., Amos, C. I., and Bierut, L. J. (2010). Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 6, e1001053. doi: 10.1371/journal.pgen.1001053
Salminen, O., Murphy, K. L., Mcintosh, J. M., Drago, J., Marks, M. J., Collins, A. C., and Grady, S. R. (2004). Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol. Pharmacol. 65, 1526–1535.
Schlaepfer, I. R., Hoft, N. R., Collins, A. C., Corley, R. P., Hewitt, J. K., Hopfer, C. J., Lessem, J. M., Mcqueen, M. B., Rhee, S. H., and Ehringer, M. A. (2008). The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol. Psychiatry 63, 1039–1046.
Shenassa, E. D., Mccaffery, J. M., Swan, G. E., Khroyan, T. V., Shakib, S., Lerman, C., Lyons, M., Mouttapa, M., Niaura, R. S., Buka, S. L., Leslie, F., and Santangelo, S. L. (2003). Intergenerational transmission of tobacco use and dependence: a transdisciplinary perspective. Nicotine Tob. Res. 5(Suppl. 1), S55–S69.
Stallings, M. C., Hewitt, J. K., Beresford, T., Heath, A. C., and Eaves, L. J. (1999). A twin study of drinking and smoking onset and latencies from first use to regular use. Behav. Genet. 29, 409–421.
Stroud, L. R., Paster, R. L., Goodwin, M. S., Shenassa, E., Buka, S., Niaura, R., Rosenblith, J. F., and Lipsitt, L. P. (2009). Maternal smoking during pregnancy and neonatal behavior: a large-scale community study. Pediatrics 123, e842–e848.
Swan, G. E., Carmelli, D., and Cardon, L. R. (1996). The consumption of tobacco, alcohol, and coffee in Caucasian male twins: a multivariate genetic analysis. J. Subst. Abuse 8, 19–31.
Thorgeirsson, T. E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K. P., Manolescu, A., Thorleifsson, G., Stefansson, H., Ingason, A., Stacey, S. N., Bergthorsson, J. T., Thorlacius, S., Gudmundsson, J., Jonsson, T., Jakobsdottir, M., Saemundsdottir, J., Olafsdottir, O., Gudmundsson, L. J., Bjornsdottir, G., Kristjansson, K., Skuladottir, H., Isaksson, H. J., Gudbjartsson, T., Jones, G. T., Mueller, T., Gottsater, A., Flex, A., Aben, K. K., De Vegt, F., Mulders, P. F., Isla, D., Vidal, M. J., Asin, L., Saez, B., Murillo, L., Blondal, T., Kolbeinsson, H., Stefansson, J. G., Hansdottir, I., Runarsdottir, V., Pola, R., Lindblad, B., Van Rij, A. M., Dieplinger, B., Haltmayer, M., Mayordomo, J. I., Kiemeney, L. A., Matthiasson, S. E., Oskarsson, H., Tyrfingsson, T., Gudbjartsson, D. F., Gulcher, J. R., Jonsson, S., Thorsteinsdottir, U., Kong, A., and Stefansson, K. (2008). A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642.
Thorgeirsson, T. E., Gudbjartsson, D. F., Surakka, I., Vink, J. M., Amin, N., Geller, F., Sulem, P., Rafnar, T., Esko, T., Walter, S., Gieger, C., Rawal, R., Mangino, M., Prokopenko, I., Magi, R., Keskitalo, K., Gudjonsdottir, I. H., Gretarsdottir, S., Stefansson, H., Thompson, J. R., Aulchenko, Y. S., Nelis, M., Aben, K. K., Den Heijer, M., Dirksen, A., Ashraf, H., Soranzo, N., Valdes, A. M., Steves, C., Uitterlinden, A. G., Hofman, A., Tonjes, A., Kovacs, P., Hottenga, J. J., Willemsen, G., Vogelzangs, N., Doring, A., Dahmen, N., Nitz, B., Pergadia, M. L., Saez, B., De Diego, V., Lezcano, V., Garcia-Prats, M. D., Ripatti, S., Perola, M., Kettunen, J., Hartikainen, A. L., Pouta, A., Laitinen, J., Isohanni, M., Huei-Yi, S., Allen, M., Krestyaninova, M., Hall, A. S., Jones, G. T., Van Rij, A. M., Mueller, T., Dieplinger, B., Haltmayer, M., Jonsson, S., Matthiasson, S. E., Oskarsson, H., Tyrfingsson, T., Kiemeney, L. A., Mayordomo, J. I., Lindholt, J. S., Pedersen, J. H., Franklin, W. A., Wolf, H., Montgomery, G. W., Heath, A. C., Martin, N. G., Madden, P. A., Giegling, I., Rujescu, D., Jarvelin, M. R., Salomaa, V., Stumvoll, M., Spector, T. D., Wichmann, H. E., Metspalu, A., Samani, N. J., Penninx, B. W., Oostra, B. A., Boomsma, D. I., Tiemeier, H., Van Duijn, C. M., Kaprio, J., Gulcher, J. R., Mccarthy, M. I., Peltonen, L., Thorsteinsdottir, U., and Stefansson, K. (2010). Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 42, 448–453.
Tizabi, Y., Popke, E. J., Rahman, M. A., Nespor, S. M., and Grunberg, N. E. (1997). Hyperactivity induced by prenatal nicotine exposure is associated with an increase in cortical nicotinic receptors. Pharmacol. Biochem. Behav. 58, 141–146.
True, W. R., Xian, H., Scherrer, J. F., Madden, P. A., Bucholz, K. K., Heath, A. C., Eisen, S. A., Lyons, M. J., Goldberg, J., and Tsuang, M. (1999). Common genetic vulnerability for nicotine and alcohol dependence in men. Arch. Gen. Psychiatry 56, 655–661.
Wakschlag, L. S., Henry, D. B., Blair, R. J., Dukic, V., Burns, J., and Pickett, K. E. (2011). Unpacking the association: individual differences in the relation of prenatal exposure to cigarettes and disruptive behavior phenotypes. Neurotoxicol. Teratol. 33, 145–154.
Weiss, R. B., Baker, T. B., Cannon, D. S., Von Niederhausern, A., Dunn, D. M., Matsunami, N., Singh, N. A., Baird, L., Coon, H., Mcmahon, W. M., Piper, M. E., Fiore, M. C., Scholand, M. B., Connett, J. E., Kanner, R. E., Gahring, L. C., Rogers, S. W., Hoidal, J. R., and Leppert, M. F. (2008). A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet. 4, e1000125. doi: 10.1371/journal.pgen.1000125
Citation: Ehringer MA (2012) Connecting ncRNA cigarette smoking studies with tobacco use behaviors and health outcomes. Front. Gene. 3:49. doi: 10.3389/fgene.2012.00049
Received: 28 February 2012; Accepted: 20 March 2012;
Published online: 18 April 2012.
Copyright: © 2012 Ehringer. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.
*Correspondence: marissa.ehringer@colorado.edu