ORIGINAL RESEARCH article
Front. Genet.
Sec. Livestock Genomics
Volume 16 - 2025 | doi: 10.3389/fgene.2025.1651628
This article is part of the Research TopicAdvances in Livestock Genetics: Enhancing Breeding Practices and Improving Animal HealthView all 14 articles
Comparative analysis of blood whole transcriptome profiles in Yili horses pre-and post-5000-meter racing
Provisionally accepted- Xinjiang Agricultural University, Urumqi, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
This study employed Yili horses participating in a 5000-meter race as a model to investigate exercise-induced gene expression alterations in peripheral blood using whole transcriptome sequencing. Jugular vein blood samples from the three leading horses were collected pre-and immediately post-race, yielding 2,171 differentially expressed mRNAs (2,080 upregulated, 91 downregulated), 4,375 differentially expressed LncRNAs (4,354 upregulated), and 68 differentially expressed circRNAs (64 upregulated).GO/KEGG analyses demonstrated significant enrichment of differential mRNAs in transmembrane transport function and pivotal signaling pathways (cAMP, MAPK, PI3K-Akt). Differential lncRNAs targeted neuro-signaling pathways (e.g., Neuroactive ligand-receptor interaction, Calcium signaling) and developmental regulators (stem cell pluripotency). Source genes of circRNAs were enriched in axon guidance and immune-related T cell receptor signaling. Molecular functions converged on transporter/receptor activity (mRNA/lncRNA) and nucleic acid/GTP binding (circRNA source genes). The protein-protein interaction analysis identified ten central genes within the heat shock protein family, such as HSP90AA1 and HSPA4. Notably, significant upregulation of HCN4, IGF1, PTHR1, and FGF23 indicated their potential roles in modulating cardiac rhythm, promoting tissue repair, and maintaining calcium-phosphorus homeostasis during exercise adaptation. This study provides comprehensive overview of transcriptomic regulatory mechanisms in the blood of Yili horses, offering a molecular framework for advancing understanding of physiological adaptation to exercise and optimizing equine exercise protocols.
Keywords: Yili horses, exercise stress, Whole transcriptome sequencing, Differentially expressed genes, Signaling Pathways
Received: 22 Jun 2025; Accepted: 15 Aug 2025.
Copyright: © 2025 Su, Ren, Ma, Meng, Yao, Zeng, Li, Li, Wang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jianwen Wang, Xinjiang Agricultural University, Urumqi, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.