ORIGINAL RESEARCH article
Front. Mol. Neurosci.
Sec. Pain Mechanisms and Modulators
Volume 18 - 2025 | doi: 10.3389/fnmol.2025.1574219
A NaV1.8 FlpO mouse enabling selective intersectional targeting of low threshold C fiber mechanoreceptors and nociceptors
Provisionally accepted- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Genetic targeting of select populations of cells in the mouse nervous system is often hampered by a lack of selectivity, as candidate genes for such targeting are commonly expressed by multiple cell populations, also in the same region. Intersectional targeting using two or more genes has been enabled by the development of reporter tools dependent on more than one recombinase or gene regulator. Still, widespread adoption of intersectional tools is complicated by a scarcity of driver mice expressing recombinases other than Cre. Here we report the generation and characterization of a new driver mouse that expresses the FlpO recombinase from the endogenous locus of the Scn10a gene encoding NaV1.8, a voltage-gated sodium channel that is almost exclusively expressed in the afferent limb of the peripheral nervous system. Moreover, among sensory neurons the channel is preferentially expressed in nociceptors and in low-threshold C-fiber mechanoreceptors (C-LTMRs). The mouse showed high recombination efficiency (97 %) and selectivity (93 %) in dorsal root ganglia. Reporterexpressing fibers were observed in a variety of peripheral tissues, including skin, skeletal muscle, genitalia, bladder and intestines. To validate the suitability of the FlpO mouse line for intersectional targeting, we crossed it with a mouse line expressing CreERT2 from the Th (tyrosine hydroxylase) locus. This approach resulted in strikingly selective and efficient targeting of C-LTMRs, showing robust visualization of nerve endings of these fibers in skin and spinal cord at the light and electron microscopic level. Thus, the NaV1.8 Flpo mouse line presented here constitutes a selective and versatile tool for intersectional genetic targeting of NaV1.8 expressing primary afferent neurons.
Keywords: Pain, Nociception, somatosensory system, Primary afferent fibers, Spinal Cord, APEX2
Received: 10 Feb 2025; Accepted: 12 May 2025.
Copyright: © 2025 Chen, Kaczmarczyk, Jackson and Larsson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Max Larsson, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.