ORIGINAL RESEARCH article
Front. Physiol.
Sec. Computational Physiology and Medicine
Volume 16 - 2025 | doi: 10.3389/fphys.2025.1596150
Heart Sound Classification Based on Convolutional Neural Network with Convolutional Block Attention Module
Provisionally accepted- 1Zhejiang Fashion Institute of Technology, Ningbo, Zhejiang Province, China
- 2College of Science and Technology, Ningbo University, Ningbo, Zhejiang Province, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Cardiovascular diseases (CVDs) remain a leading cause of global mortality, underscoring the need for accurate and efficient diagnostic tools. This study presents an enhanced heart sound classification framework based on a Convolutional Neural Network (CNN) integrated with the Convolutional Block Attention Module (CBAM). Heart sound recordings from the PhysioNet CinC 2016 dataset were segmented and transformed into spectrograms, and twelve CNN models with varying CBAM configurations were systematically evaluated. Experimental results demonstrate that selectively integrating CBAM into early and mid-level convolutional blocks significantly improves classification performance. The optimal model, with CBAM applied after Conv Blocks 1-1, 1-2, and 2-1, achieved an accuracy of 98.66%, outperforming existing state-of-the-art methods. Additional validation using an independent test set from the PhysioNet 2022 database confirmed the model's generalization capability, achieving an accuracy of 95.6% and an AUC of 96.29%. Furthermore, T-SNE visualizations revealed clear class separation, highlighting the model's ability to extract highly discriminative features. These findings confirm the efficacy of attention-based architectures in medical signal classification and support their potential for real-world clinical applications.
Keywords: Heart sound classification, Convolutional Neural Network, Convolutional block attention module, CBAM, attention mechanism, Medical Signal Processing
Received: 19 Mar 2025; Accepted: 21 May 2025.
Copyright: © 2025 Huai, JIANG, Wang, Chen and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Lei JIANG, College of Science and Technology, Ningbo University, Ningbo, Zhejiang Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.