ORIGINAL RESEARCH article
Front. Syst. Biol.
Sec. Data and Model Integration
Volume 5 - 2025 | doi: 10.3389/fsysb.2025.1649758
This article is part of the Research TopicThe Application of Multi-omics Analysis in Translational MedicineView all 12 articles
GETgene-AI: A Framework for Prioritizing Actionable Cancer Drug Targets
Provisionally accepted- The University of Alabama at Birmingham, Birmingham, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Prioritizing actionable drug targets is a critical challenge in cancer research, where high-dimensional genomic data and the complexity of tumor biology often hinder effective prioritization. To address this, we developed GETgene-AI, a novel computational framework that integrates network-based prioritization, machine learning, and automated literature analysis to prioritize and rank potential therapeutic targets. Central to GETgene-AI is the G.E.T. strategy, which combines three data streams: mutational frequency (G List), differential expression (E List), and known drug targets (T List). These components are iteratively refined and ranked using the Biological Entity Expansion and Ranking Engine (BEERE), leveraging protein-protein interaction networks, functional annotations, and experimental evidence. Additionally, GETgene-AI incorporates GPT-4o, an advanced large language model, to automate literature-based ranking, reducing manual curation and increasing efficiency. In this study, we applied GETgene-AI to pancreatic cancer as a case study. The framework successfully prioritized high-priority targets such as PIK3CA and PRKCA, validated through experimental evidence and clinical relevance. Benchmarking against GEO2R and STRING demonstrated GETgene-AI's superior performance, achieving higher precision, recall, and efficiency in prioritizing actionable targets. Moreover, the framework mitigated false positives by deprioritizing genes lacking functional or clinical significance. While demonstrated on pancreatic cancer, the modular design of GETgene-AI enables scalability across diverse cancers and diseases. By integrating multi-omics datasets with advanced computational and AI-driven approaches, GETgene-AI provides a versatile and robust platform for accelerating cancer drug discovery. This framework bridges computational innovations with translational research to improve patient outcomes.
Keywords: Cancer, Pancreatic Cancer, Network-based prioritization, computational biology & bioinformatics, Drug target prioritization, drug target, network biology, Gene prioritarization
Received: 19 Jun 2025; Accepted: 15 Sep 2025.
Copyright: © 2025 Chen and Gu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Adrian Gu, adrgu666@gmail.com
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.