Research Topic

Altered Bioenergetics, Mitochondrial Quality Control, and Calcium Signaling in the Brain: Implications to Age-related Diseases

About this Research Topic

Neurons predominantly rely on high quality mitochondria to provide the necessary energy demands required to maintain essential neuronal functions including neuronal connectivity, neuronal activity, neuronal development and survival. Importantly, high quality mitochondria are necessary to provide the necessary energy and a low level of oxidative stress to maintain proper executive functions including self-regulation, working memory, focus and planning skills in humans. In order for neurons to maintain a level of high-quality mitochondria, mitochondria must undergo constant fission and fusion, be able to efficiently buffer calcium, traffic to sites of high-energy demands including dendrites and axons, and continuously undergo turnover (mitophagy) and biogenesis.

On the other hand, mitochondrial dysfunction- caused by an overt accumulation of mitochondrial DNA mutations, altered calcium levels, and mitochondrial-derived reactive oxygen species- contributes to age-related cognitive decline and underlies the etiology of many age-related neurodegenerative disorders including Parkinson’s disease, Lewy Body dementia and Alzheimer’s disease. Mitochondrial dysfunction is defined by a progressive decrease in mitochondrial-derived ATP, a lack of mitochondrial mobility (trafficking) to distal sites of dendrites and axons, a decrease in transmembrane potential leading to inefficiently coupled mitochondria, overtly fragmented mitochondria and an inability to handle cytosolic calcium. However, how normal brain aging leads to mitochondrial dysfunction and the pathological mechanisms by which mitochondrial dysfunction contribute to neurodegeneration and cognitive decline in age-related neurodegenerative disease are beginning to be elucidated.

For this Research Topic, we welcome the submission of original and high quality research manuscripts and reviews that focus on the interplay that altered bioenergetics, oxidative stress, mitochondrial dysfunction and altered mitochondrial calcium handling contribute to the pathogenesis of age-related cognitive decline and neurodegenerative diseases. Reviews that focus on recent advances in the development of “mito-protective therapies” to reverse mitochondrial dysfunction and neurodegeneration are also welcome.


Keywords: mitochondrial dynamics, mitochondrial import, mitochondrial biogenesis, calcium signaling, mitophagy, mitochondrial trafficking, bioenergetics, oxidative stress, neurotrophic signalling, neurodegeneration


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Neurons predominantly rely on high quality mitochondria to provide the necessary energy demands required to maintain essential neuronal functions including neuronal connectivity, neuronal activity, neuronal development and survival. Importantly, high quality mitochondria are necessary to provide the necessary energy and a low level of oxidative stress to maintain proper executive functions including self-regulation, working memory, focus and planning skills in humans. In order for neurons to maintain a level of high-quality mitochondria, mitochondria must undergo constant fission and fusion, be able to efficiently buffer calcium, traffic to sites of high-energy demands including dendrites and axons, and continuously undergo turnover (mitophagy) and biogenesis.

On the other hand, mitochondrial dysfunction- caused by an overt accumulation of mitochondrial DNA mutations, altered calcium levels, and mitochondrial-derived reactive oxygen species- contributes to age-related cognitive decline and underlies the etiology of many age-related neurodegenerative disorders including Parkinson’s disease, Lewy Body dementia and Alzheimer’s disease. Mitochondrial dysfunction is defined by a progressive decrease in mitochondrial-derived ATP, a lack of mitochondrial mobility (trafficking) to distal sites of dendrites and axons, a decrease in transmembrane potential leading to inefficiently coupled mitochondria, overtly fragmented mitochondria and an inability to handle cytosolic calcium. However, how normal brain aging leads to mitochondrial dysfunction and the pathological mechanisms by which mitochondrial dysfunction contribute to neurodegeneration and cognitive decline in age-related neurodegenerative disease are beginning to be elucidated.

For this Research Topic, we welcome the submission of original and high quality research manuscripts and reviews that focus on the interplay that altered bioenergetics, oxidative stress, mitochondrial dysfunction and altered mitochondrial calcium handling contribute to the pathogenesis of age-related cognitive decline and neurodegenerative diseases. Reviews that focus on recent advances in the development of “mito-protective therapies” to reverse mitochondrial dysfunction and neurodegeneration are also welcome.


Keywords: mitochondrial dynamics, mitochondrial import, mitochondrial biogenesis, calcium signaling, mitophagy, mitochondrial trafficking, bioenergetics, oxidative stress, neurotrophic signalling, neurodegeneration


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

26 August 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

26 August 2021 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..