Skip to main content

ORIGINAL RESEARCH article

Front. Agron.
Sec. Climate-Smart Agronomy
Volume 6 - 2024 | doi: 10.3389/fagro.2024.1339410

Impact of climate change and genetic development on Iowa corn yield Provisionally Accepted

  • 1Tilburg University, Netherlands
  • 2University of Oxford, United Kingdom
  • 3Carnegie Mellon University, United States

The final, formatted version of the article will be published soon.

Receive an email when it is updated
You just subscribed to receive the final version of the article

The vulnerability of corn yield to high temperature and insufficient rainfall in the US mid-west is widely acknowledged. The impact of extreme weather and genetic development on corn yield is less well known. One of the main reasons is that the multicollinearity in the variables can lead to confounding results. Here we model the impact of climate and genetic development by employing an elastic net regression model to address the multicollinearity issue. This allows us to develop a more robust multiple regression model with higher predictive accuracy. Using granular data for Iowa from 1981-2018, we find that corn yield is vulnerable to high mean summer temperatures particularly in July, a widening diurnal temperature range in June and dry summer conditions (due to extremely low rainfall) from June-August. We find that overall climate impact reduced average annual yield by 0.7%. We also find that genetic development which led to earlier planting dates, widening duration of the reproductive interval, higher growing degree day accumulation and larger net planted area had a beneficial impact on the Iowa corn yield during 1981-2018 resulting in an average annual yield improvement of 1.8% per annum. This provides a basis for optimism that these genetic developments and management practices will continue to adapt and improve in the future to counter the impact of climate change on corn yield. We have also modelled the impact of future climate change using the latest climate projections from the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). These climate projections show that the average temperature during the growing season (May -October) will increase by 2.4 -2.9 o C by mid-century while the average spring temperature (March and April) will increase by a relatively slower 1.9 -2.3 o C by mid-century. Additionally, climate projections show that both temperature and rainfall will also become more extreme in the future with the changes varying from spring to summer. Our results show that, just due to climate change alone in Iowa corn yield will decline between 1.4-1.7% per annum until mid-century (or 1.2-2.1% per annum until the late twenty first century).

Keywords: Corn yield, extreme weather, Elastic net regression, genetic development, Climate change

Received: 16 Nov 2023; Accepted: 12 Apr 2024.

Copyright: © 2024 Zai, McSharry and Hamers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Mx. Faisal Zai, Tilburg University, Tilburg, Netherlands