%A Tanikawa,Toyoaki %A Masuda,Yoichi %A Ishikawa,Masato %D 2021 %J Frontiers in Neurorobotics %C %F %G English %K spinal reflex,Gait generation,Quadruped,Hill-type muscle,autonomous decentralized control,Neurophysiology,bio- inspired robot,Walking %Q %R 10.3389/fnbot.2021.636864 %W %L %M %P %7 %8 2021-April-08 %9 Original Research %# %! Reflex Analysis on Robotic Platform %* %< %T A Reciprocal Excitatory Reflex Between Extensors Reproduces the Prolongation of Stance Phase in Walking Cats: Analysis on a Robotic Platform %U https://www.frontiersin.org/articles/10.3389/fnbot.2021.636864 %V 15 %0 JOURNAL ARTICLE %@ 1662-5218 %X Spinal reflex is essential to the robust locomotion of quadruped animals. To investigate the reflex mechanisms, we developed a quadruped robot platform that emulates the neuromuscular dynamics of animals. The leg is designed to be highly back-drivable, and four Hill-type muscles and neuronal pathways are simulated on each leg using software. By searching for the reflex circuit that contributes to the generation of steady gait in cats through robotic experiments, we found a simple reflex circuit that could produce leg trajectories and a steady gait. In addition, this circuit can reproduce the experimental behavior observed in cats. As a major contribution of this study, we show that the underlying structure of the reflex circuit is the reciprocal coupling between extensor muscles via excitatory neural pathways. In the walking experiments on the robot, a steady gait and experimental behaviors of walking cats emerged from the reflex circuit without any central pattern generators. Furthermore, to take advantage of walking experiments using a neurophysiological robotic platform, we conducted experiments in which a part of the proposed reflex circuit was disconnected for a certain period of time during walking. The results showed that the prolongation of the stance phase caused by the reciprocal excitatory reflex contributed greatly to the generation of a steady gait.