Impact Factor 4.300

The world's most-cited Neurosciences journals

This article is part of the Research Topic

Development of the Striatum in Health and Disease

General Commentary ARTICLE

Front. Cell. Neurosci., 12 May 2015 | https://doi.org/10.3389/fncel.2015.00177

A commentary on “Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient”

Berardino Porfirio1*, Annamaria Morelli2, Renato Conti3, Gabriella B. Vannelli2 and Pasquale Gallina3
  • 1Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
  • 2Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
  • 3Department of Surgery and Translational Medicine, University of Florence, Florence, Italy

A commentary on
Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient

by Reddington, A. E., Rosser, A. E., and Dunnett, S. B. (2014). Front. Cell. Neurosci. 8:398. doi: 10.3389/fncel.2014.00398

Proof-of-concept has long been gained from both Huntington's disease (HD) animal models and pilot clinical trials that transplantation of fetal striatal tissue has the potential to offer a substitutive therapy to HD patients (Peschanski et al., 1995; Bachoud-Lévi et al., 2006; Reuter et al., 2008; Paganini et al., 2014). Nonetheless, in the stem cell era, the body of knowledge so far obtained from fetal tissue as cell source may well be handed over to the clinical exploitation of neural stem cells (Tabar and Studer, 2014).

Loss of DARPP-32 medium-sized spiny projection neurons (MSN) in the striatum is a hallmark of HD. Hence, production of this cell type from pluripotent stem cells holds promises for achieving brain repair (Dunnett and Rosser, 2014). Reddington et al. (2014) analyzed the shortcomings of targeting at just the MSN lineage and correctly pointed out that one has to readdress the question “what constitutes a functional striatal graft?” Important insights are in fact emerging from studies encompassing fetal striatal grafting and normal striatal development.

Caudate-putaminal transplantation of human striatal primordium is straightforward in its procedure, since just involves the injection of a dissociated cell suspension into the adult HD brain without any additional growth factors or other supply (Bachoud-Lévi and Perrier, 2014). Four reports provided long-term analysis of Unified HD Rating Scale performances after transplantation of a limited number of patients (Bachoud-Lévi et al., 2006; Reuter et al., 2008; Barker et al., 2013; Paganini et al., 2014). The results of these not-randomized studies are reportedly at variance. While Barker et al. (2013) found no sustained functional benefit due to deadly and/or insufficient number of grafted cells, the other three studies demonstrated some clinical benefit which paralleled with graft survival, development and function. In the Florence experience, some of the grafts have been growing for 9–12 months, then stopped, perhaps according to a self-limiting and time-scheduled pattern (Gallina et al., 2010, 2014; Mascalchi et al., 2014). In particular, Gallina et al. (2014) reported an illustrative case where the characterization of the intrinsic, multifaceted molecular asset of the graft was associated with its ability to perform those developmental steps that led to a viable structure remodeling basal ganglia anatomy. In vitro studies, aimed at characterizing the fetal striatal source used in transplantation protocols, revealed that human striatal precursor (HSP) cells isolated from 9 to 12-week-old human fetuses, possess the machinery for long-term survival, proliferation and differentiation (Sarchielli et al., 2014; Ambrosini et al., 2015). Indeed, HSP cells featured a mixed population of immature elements, neuronal/glial-restricted progenitors and striatal neurons, pointing to a plastic phenotype already committed to become striatum. This heterogeneous composition reflects that of striatal primordium and favors its regenerative potential in HD patients. In addition, HSP cells are well equipped for adaptation and survival to hypoxia (Ambrosini et al., 2015), one of the micro-environmental stress to which grafted cells are exposed when transplanted into the diseased host brain, where the loss of neurons is also accompanied with reduced trophic support due to both astrocyte and blood vessel atrophy (Cisbani et al., 2013). Further investigations on the mechanisms underlying normal striatal ontogenesis are needed to identify the optimal fetal source and the adequate developmental window in order to optimize protocols for the use of human fetal striatal transplantation therapy in HD. In this regard, both in vitro modeling and ex vivo experiments have recently provided a molecular definition of developing striatal anatomy, showing how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development (Onorati et al., 2014). In particular, the observation that DARPP-32 is expressed in the human LGE together with other striatal markers, but also in the human cortical plate at 8–11 weeks (Onorati et al., 2014), should be considered when monitoring in vitro the differentiation of human pluripotent stem cells toward MSN, as well as when grafting fetal striatum.

Even if deeper understanding is needed to fully answer the question “what constitutes a functional striatal graft,” provided it is taken within the appropriate developmental stage, striatal primordium seems to fulfill the requirements for effective repair. We definitely agree that a pure MSN fate may not be sufficient for successful stem-cell based transplantation protocols, especially because multiple types of striatal neurons and glial cells are required for a full striatal reconstruction. Therefore, more sophisticated differentiation protocols will be necessary. In the meanwhile, it would be extremely important for people who are now living the dramatic condition of HD prospective trials be undertaken to assess the clinical utility of fetal-tissue based therapies. Certainly, several challenges remain to be faced, including overall optimization of graft procedure and patient management (Baizabal-Carvallo, 2014; Bachoud-Lévi and Perrier, 2014). However, based on what we have learned up to now, it seems appropriate not to neglect this approach and keep going. We owe it to patients.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The Florence neural transplantation program is supported by Careggi University Hospital and by Ente Cassa Risparmio di Firenze, Italy.

References

Ambrosini, S., Sarchielli, E., Comeglio, P., Porfirio, B., Gallina, P., Morelli, A., et al. (2015). Fibroblast growth factor and endothelin-1 receptors mediate the response of human striatal precursor cells to hypoxia. Neuroscience 289, 123–133. doi: 10.1016/j.neuroscience.2014.12.073

PubMed Abstract | CrossRef Full Text | Google Scholar

Bachoud-Lévi, A.-C., and Perrier, A. L. (2014). Regenerative medicine in Huntington's disease: current status on fetal grafts and prospects for the use of pluripotent stem cell. Rev. Neurol. 170, 749–762. doi: 10.1016/j.neurol.2014.10.007

PubMed Abstract | CrossRef Full Text | Google Scholar

Bachoud-Lévi, A.-C., Gaura, V., Brugières, P., Lefaucheur, J. P., Boissé, M. F., Maison, P., et al. (2006). Effect of foetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 5, 303–309. doi: 10.1016/S1474-4422(06)70381-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Baizabal-Carvallo, J. F. (2014). Fetal grafting for Huntington's disease. Is there a hope? J. Neurol. Neurosurg. Psychiatry 85, 950. doi: 10.1136/jnnp-2013-307252

PubMed Abstract | CrossRef Full Text | Google Scholar

Barker, R. A., Mason, S. L., Harrower, T. B., Swain, R. A., Ho, A. K., Sahakian, B. J., et al. (2013). The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington's disease. J. Neurol. Neurosurg. Psychiatry 84, 657–665. doi: 10.1136/jnnp-2012-302441

PubMed Abstract | CrossRef Full Text | Google Scholar

Cisbani, G., Freeman, T. B., Soulet, D., Saint-Pierre, M., Gagnon, D., Parent, M., et al. (2013). Striatal allografts in patients with Huntington's disease: impact of diminished astrocytes and vascularization on graft viability. Brain 136, 433–443. doi: 10.1093/brain/aws359

PubMed Abstract | CrossRef Full Text | Google Scholar

Dunnett, S. B., and Rosser, A. E. (2014). Challenges for taking primary and stem cell therapies into clinical trials for neurodegenerative disease. Neurobiol. Dis. 61, 79–89. doi: 10.1016/j.nbd.2013.05.004

PubMed Abstract | CrossRef Full Text

Gallina, P., Paganini, M., Lombardini, L., Mascalchi, M., Porfirio, B., Gadda, D., et al. (2010). Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington's disease patients after transplantation. Exp. Neurol. 222, 30–41. doi: 10.1016/j.expneurol.2009.12.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Gallina, P., Paganini, M., Biggeri, A., Marini, M., Romoli, A. M., Sarchielli, E., et al. (2014). Human striatum remodeling after neurotransplantation in Huntington's disease. Stereotact. Funct. Neurosurg. 92, 211–217. doi: 10.1159/000360583

PubMed Abstract | CrossRef Full Text | Google Scholar

Mascalchi, M., Diciotti, S., Paganini, M., Bianchi, A., Ginestroni, A., Lombardini, L., et al. (2014). Large-sized fetal striatal grafts in Huntington's disease do stop growing: long-term monitoring in the Florence experience. PLoS Curr. 6. doi: 10.1371/currents.hd.c0ad575f12106c38f9f5717a8a7d05ae

PubMed Abstract | CrossRef Full Text | Google Scholar

Onorati, M., Castiglioni, V., Biasci, D., Cesana, E., Menon, R., Vuono, R., et al. (2014). Molecular and functional definition of the developing human striatum. Nat. Neurosci. 17, 1804–1815. doi: 10.1038/nn.3860

PubMed Abstract | CrossRef Full Text | Google Scholar

Paganini, M., Biggeri, A., Romoli, A. M., Mechi, C., Ghelli, E., Berti, V., et al. (2014). Fetal striatal grafting slows motor and cognitive decline of Huntington's disease. J. Neurol. Neurosurg. Psychiatry 85, 974–981. doi: 10.1136/jnnp-2013-306533

PubMed Abstract | CrossRef Full Text | Google Scholar

Peschanski, M., Cesaro, P., and Hantraye, P. (1995). Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington's disease. Neuroscience 68, 273–285.

PubMed Abstract | Google Scholar

Reddington, A. E., Rosser, A. E., and Dunnett, S. B. (2014). Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Front. Cell. Neurosci. 8:398. doi: 10.3389/fncel.2014.00398

PubMed Abstract | CrossRef Full Text | Google Scholar

Reuter, I., Tai, Y. F., Pavese, N., Chaudhuri, K. R., Mason, S., Polkey, C. E., et al. (2008). Longterm clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington's disease. J. Neurol. Neurosurg. Psychiatry 79, 948–951. doi: 10.1136/jnnp.2007.142380

PubMed Abstract | CrossRef Full Text | Google Scholar

Sarchielli, E., Marini, M., Ambrosini, S., Peri, A., Mazzanti, B., Pinzani, P., et al. (2014). Multifaceted roles of BDNF and FGF2 in human striatal primordium development. An in vitro study. Exp. Neurol. 257, 130–147. doi: 10.1016/j.expneurol.2014.04.021

PubMed Abstract | CrossRef Full Text | Google Scholar

Tabar, V., and Studer, L. (2014). Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15, 82–92. doi: 10.1038/nrg3563

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: DARPP-32 neurons, embryonic stem cell striatal-committed progenitors, fetal striatal transplantation, Huntington's disease, striatal anlagen

Citation: Porfirio B, Morelli A, Conti R, Vannelli GB and Gallina P (2015) A commentary on “Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient”. Front. Cell. Neurosci. 9:177. doi: 10.3389/fncel.2015.00177

Received: 08 April 2015; Accepted: 22 April 2015;
Published: 12 May 2015.

Edited by:

Màté Dániel Döbrössy, University Freiburg-Medical Center, Germany

Reviewed by:

Anselme Louis Perrier, Institut National de la Santé et de la Recherche Médicale, France

Copyright © 2015 Porfirio, Morelli, Conti, Vannelli and Gallina. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Berardino Porfirio, nporfirio@unifi.it