ORIGINAL RESEARCH article
Front. Aging Neurosci.
Sec. Alzheimer's Disease and Related Dementias
Volume 17 - 2025 | doi: 10.3389/fnagi.2025.1566929
This article is part of the Research TopicMolecular mechanisms of neurodegenerationView all 17 articles
Bioinformatics and experimental validation identify biomarkers for diagnosing Alzheimer's disease
Provisionally accepted- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background and purpose: Alzheimer's disease (AD) is a complex condition involving multiple mechanisms, primarily characterized by the progressive decline in cognition and memory. At present, there is no simple and reliable diagnostic method available for clinical application. Therefore, this study aims to identify potential biomarkers for AD using bioinformatics, providing new insights into its diagnosis.Methods: This study utilized the transcriptome dataset GSE63060 from the Gene Expression Omnibus (GEO) and applied bioinformatics approaches to identify candidate genes. Differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) networks, and machine learning techniques (LASSO, SVM-RFE, Boruta, and XGBoost) were employed on the GSE63060 dataset. Subsequently, the expression levels of the candidate genes were evaluated, and a receiver operating characteristic (ROC) curve was constructed to identify hub genes and establish a corresponding network. Finally, we focused on the common upstream transcription factor c-Myc among the hub genes and conducted clinical experiments to validate its potential. Serum samples were collected from 41 AD patients treated at the Second Affiliated Hospital of Harbin Medical University between October 2023 and November 2024, along with 41 control subjects. The c-Myc protein concentration was measured using ELISA, and a ROC curve was constructed to assess its diagnostic potential.Results: This study identified four hub genes associated with AD: RPL36AL, NDUFA1, NDUFS5, and RPS25. Additionally, the concentration of the c-Myc protein was significantly different between the AD and control groups (P < 0.001). The diagnostic sensitivity was 87.8%, specificity was 51.2%, and the area under the curve (AUC) value was 0.753, suggesting that c-Myc has independent diagnostic significance for AD.Our study demonstrates that RPL36AL, NDUFA1, NDUFS5, and RPS25 have potential as biomarkers for the diagnosis of AD. Additionally, the experiment suggests that c-Myc could serve as a promising blood biomarker for the diagnosis of AD.
Keywords: Alzheimer's disease, bioinformatics, c-Myc, biomarkers, ELISA
Received: 26 Jan 2025; Accepted: 24 Jul 2025.
Copyright: © 2025 Liu, Li, Zhai, Li and Ma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Lan Ma, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.