- 1Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- 2Department of Entomology, Rutgers University, New Brunswick, NJ, United States
- 3ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rotondella, Italy
- 4Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
Editorial on the Research Topic
Latest research advances in biology, ecology, and integrated pest management of invasive insects
Insect pests pose a significant threat to crop production and food security, being a leading cause of crop loss. This threat is amplified by the pests’ ability to spread, driven by their increasing tolerance to environmental extremes and their capacity to develop resistance to insecticides. Invasive insect species present an even greater challenge to agricultural production (Qureshi et al., 2009; Clarke and McGeoch, 2023; Subedi et al., 2023), as they disrupt native communities and trigger both bottom-up and top-down effects within local ecosystems. Over the past century, the number of invasive insect species affecting agriculture has risen significantly, fueled by climate change and the intensification of global trade (Baloch et al., 2020; Hulme, 2021). The negative ecological impacts of these species can occur soon after their introduction or take years to manifest, depending on their ability to adapt through changes in phenotypic plasticity, reproductive success, and the absence of natural enemies.
While major agricultural producers are significant sources of invasive species, consumer nations are often more vulnerable to these pests (Paini et al., 2016). For example, the fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae) and the spotted-wing drosophila (Drosophila suzukii; Diptera: Drosophilidae) have spread widely due to international trade. Both pests are highly polyphagous, feeding on a wide range of economically important crops. Their success is largely attributed to the absence of natural enemies in new environments and their high reproductive potential. Additionally, favorable climatic conditions and abundant host plants facilitate rapid breeding, leading to multiple generations per year (Asplen et al., 2015; Day et al., 2017).
Given the additional threat due to climate change, effective and sustainable strategies are urgently needed to control invasive insect pests and ensure agricultural sustainability, food security, and ecosystem health. Assèdé et al. analyzed studies published between 1991 and 2024 and found that insecticide application remains the primary method for controlling both invasive and local insect pests in sub-Saharan Africa. While insecticides are favored for their rapid action and effectiveness, their widespread use carries significant risks, including human health threats, environmental degradation, disruption of beneficial agricultural functions (such as pollination and biological control), secondary pest outbreaks, and, most critically, the development of resistance (Nicolopoulou-Stamati et al., 2016). To mitigate these risks, sustainable approaches such as Integrated Pest Management (IPM) are being explored. These strategies combine biological control using indigenous or exotic natural enemies, the use of target-specific insecticides, water harvesting, drip irrigation, cultivation of resistant plant varieties, and agroecological practices.
Successful management of invasive pests depends on early detection and accurate identification. Common monitoring methods include pheromone traps, panel traps, visual sampling, extraction techniques (such as sugar, salt, freezing, and heat extraction), sweep-netting, and fruit damage assessment. Early detection provides crucial information for pest management decisions. For example, Babu and Sial validated a novel vacuum extraction protocol for sampling D. suzukii larvae. Tested at two blueberry production sites, this method shows promise as a tool for growers to manage D. suzukii more effectively.
In small-scale production systems, mechanical control can effectively reduce invasive insect populations. For example, African farmers often handpick larvae and crush egg masses and neonate larvae of S. frugiperda in small maize fields. These practices help reduce pest populations locally and prevent mature individuals from dispersing to larger production areas (Togola et al.).
Understanding the bottom-up effects between plants and insects is crucial for effective insect management. For instance, activators of plant defenses can play a key role in IPM programs, although their full potential has yet to be realized. Maldani et al. investigated the use of phytohormones to activate plant defenses in wheat against the Hessian fly, Mayetiola destructor, and found that the effectiveness of these treatments depended on the timing of application and larval density. Similarly, Quadrel et al. tested commercial elicitors, including those activating the salicylic acid and jasmonic acid defense pathways in plants, but found no effect as a standalone strategy on repelling or deterring oviposition or inducing larval toxicity in D. suzukii.
In conclusion, ensuring safe and sustainable agricultural production remains a global challenge, as crops face multiple, synergistic threats from both native and invasive pests. The focus is shifting toward reducing insecticide use to minimize health and environmental risks, while developing practical, environmentally safe, and cost-effective control methods. IPM offers a promising alternative, aiming to reduce reliance on insecticides. Numerous innovative strategies have been developed to meet the evolving needs of modern agriculture, but further research is essential for their full implementation. Moreover, the limited understanding of how environmental conditions influence new control methods presents a significant challenge. Studying pest invasiveness, understanding their biology and ecology, identifying vulnerable life stages, and assessing how various agronomic practices influence insect populations and damage are crucial for developing effective and sustainable IPM strategies (Dara, 2021).
Author contributions
MI: Writing – original draft, Writing – review & editing. CR-S: Writing – original draft, Writing – review & editing. SA: Writing – review & editing. EC: Writing – review & editing.
Acknowledgments
We thank the Frontiers in Agronomy for the opportunity to edit this Research Topic. We are grateful for Rosa Booth, Ioanna Strantzali, and Sammy Cheung for their technical support. We are also thankful to all the authors who contributed to this Research Topic and the reviewers for critically evaluating the manuscripts.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Generative AI statement
The author(s) declare that no Generative AI was used in the creation of this manuscript.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
Asplen M. K., Anfora G., Biondi A., Choi D.-S., Chu D., Daane K. M., et al. (2015). Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88, 469–494. doi: 10.1007/s10340-015-0681-z
Baloch M. N., Fan J., Haseeb M., and Zhang R. (2020). Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in central Asia. Insects 11, 172. doi: 10.3390/insects11030172
Clarke D. A. and McGeoch M. A. (2023). Invasive alien insects represent a clear but variable threat to biodiversity. Curr. Res. Insect Sci. 4, 100065. doi: 10.1016/j.cris.2023.100065
Dara S. (2021). Advances in biostimulants as an integrated pest management tool in horticulture (Cambridge, UK: Burleigh Dodds Science Publishing Limited). doi: 10.19103/AS.2021.0095.03
Day R., Abrahams P., Bateman M., Beale T., Clottey V., Cock M., et al. (2017). Fall armyworm: impacts and implications for Africa. Outlooks Pest Manage. 28, 196–201. doi: 10.1564/v28_oct_02
Hulme P. E. (2021). Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth 4, 666–679. doi: 10.1016/j.oneear.2021.04.015
Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., and Hens L. (2016). Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 4. doi: 10.3389/fpubh.2016.00148
Paini D., Sheppard A., Cook D., Barro P., Worner S., and Thomas M. (2016). Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. United States America 113, 7575–7579. doi: 10.1073/pnas.1602205113
Qureshi J. A., Rogers M. E., Hall D. G., and Stansly P. A. (2009). Incidence of invasive Diaphorina citri (Hemiptera: Psyllidae) and its introduced parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) in Florida citrus. J. Econ. Entomol. 102, 247–256. doi: 10.1603/029.102.0134
Keywords: invasive insect, IPM, elicitors, mechanical control, phytohormones
Citation: Ismail M, Rodriguez-Saona C, Arpaia S and Costi E (2025) Editorial: Latest research advances in biology, ecology, and integrated pest management of invasive insects. Front. Agron. 7:1621134. doi: 10.3389/fagro.2025.1621134
Received: 30 April 2025; Accepted: 05 May 2025;
Published: 20 May 2025.
Edited and Reviewed by:
Murray B. Isman, University of British Columbia, CanadaCopyright © 2025 Ismail, Rodriguez-Saona, Arpaia and Costi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Cesar Rodriguez-Saona, Y3JvZHJpZ3VlekBuamFlcy5ydXRnZXJzLmVkdQ==