Your new experience awaits. Try the new design now and help us make it even better

REVIEW article

Front. Artif. Intell.

Sec. Medicine and Public Health

Volume 8 - 2025 | doi: 10.3389/frai.2025.1580445

This article is part of the Research TopicDeep Transfer Learning in Public Health: Opportunities for Innovation and ImprovementView all 3 articles

Deep Learning for Cardiovascular Management: Optimizing Pathways and Cost Control under Diagnosis-Related Group Models

Provisionally accepted
  • 1First Affiliated Hospital of Shantou University Medical College, Shantou, China
  • 2Department of Pharmacy, College of Medicine, Shantou University, Shantou, Guangdong Province, China

The final, formatted version of the article will be published soon.

Cardiovascular diseases (CVDs) remain the leading causes of morbidity, mortality, and healthcare expenditures, presenting substantial challenges for hospitals operating under Diagnosis-Related Group (DRG) payment models. Recent advances in deep learning offer new strategies for optimizing CVD management to meet cost control objectives. This review synthesizes the roles of deep learning in CVD diagnosis, treatment planning, and prognostic modeling, emphasizing applications that reduce unnecessary diagnostic imaging, predict high-cost complications, and optimize the utilization of critical resources like ICU beds. By analyzing medical images, forecasting adverse events from patient data, and dynamically optimizing treatment plans, deep learning offers a data-driven strategy to manage high-cost procedures and prolonged hospital stays within DRG budgets. Deep learning offers the potential for earlier risk stratification and tailored interventions, helping mitigate the financial pressures associated with DRG reimbursements. Effective integration requires multidisciplinary collaboration, robust data governance, and transparent model design. Real-world evidence, drawn from retrospective studies and large clinical registries, highlights measurable improvements in cost control and patient outcomes; for instance, AI-optimized treatment strategies have been shown to reduce estimated mortality by 3.13%. However, challenges—such as data quality, regulatory compliance, ethical issues, and limited scalability—must be addressed to fully realize these benefits. Future research should focus on continuous model adaptation, multimodal data integration, equitable deployment, and standardized outcome monitoring to validate both clinical quality and financial return on investment under DRG metrics. By leveraging deep learning’s predictive power within DRG frameworks, healthcare systems can advance toward a more sustainable model of high-quality, cost-effective CVD care.

Keywords: diagnosis-related Group, Cardiovascular disease management, deep learning, Clinical pathway, Predictive Analytics in Healthcare, AI-Driven Healthcare Solutions

Received: 20 Feb 2025; Accepted: 08 Aug 2025.

Copyright: © 2025 CHEN, Zeng and Cai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: De Cai, First Affiliated Hospital of Shantou University Medical College, Shantou, China

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.