ORIGINAL RESEARCH article
Front. Artif. Intell.
Sec. AI for Human Learning and Behavior Change
Volume 8 - 2025 | doi: 10.3389/frai.2025.1665798
This article is part of the Research TopicNew Trends in AI-Generated Media and SecurityView all 6 articles
A Self-Learning Multimodal Approach for Fake News Detection
Provisionally accepted- 1Chengdu University of Information Technology, Chengdu, China
- 2CAACSRI, Chengdu, China
- 3University at Buffalo, Buffalo, United States
- 4Dropbox Inc, San Francisco, United States
- 5Purdue University, West Lafayette, United States
- 6University at Albany, Albany, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The rapid growth of social media has resulted in an explosion of online news content, leading to a significant increase in the spread of misleading or false information. While machine learning techniques have been widely applied to detect fake news, the scarcity of labeled datasets remains a critical challenge. Misinformation frequently appears as paired text and images, where a news article or headline is accompanied by a related visuals. In this paper, we introduce a self-learning multimodal model for fake news classification. The model leverages contrastive learning, a robust method for feature extraction that operates without requiring labeled data, and integrates the strengths of Large Language Models (LLMs) to jointly analyze both text and image features. LLMs are excel at this task due to their ability to process diverse linguistic data drawn from extensive training corpora. Our experimental results on a public dataset demonstrate that the proposed model outperforms several state-of-the-art classification approaches, achieving over 85% accuracy, precision, recall, and F1-score. These findings highlight the model's effectiveness in tackling the challenges of multimodal fake news detection.
Keywords: fake news, Contrastive learning, Large Language Model, multimodal, machine learning
Received: 14 Jul 2025; Accepted: 20 Oct 2025.
Copyright: © 2025 Chen, Yu, Guo, Hu, Hu, Hu, Lyu, Wu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Hao Chen, haochen@cuit.edu.cn
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.