ORIGINAL RESEARCH article
Front. Bioinform.
Sec. Drug Discovery in Bioinformatics
Volume 5 - 2025 | doi: 10.3389/fbinf.2025.1570054
Exploiting subtractive genomics to identify novel drug targets and new immunogenic candidates against Bordetella pertussis: An in-silico study
Provisionally accepted- 1Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran., Tehran, Alborz, Iran
- 2Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Alborz, Iran
- 3Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Alborz, Iran
- 4School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran, Semnan, Semnan, Iran
- 5Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Semnan, Iran
- 6Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran, Shiraz, Fars, Iran
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Bordetella pertussis, the causative agent of whooping cough, remains a significant global health concern despite the widespread availability of vaccines. The persistent reemergence of pertussis is driven by the bacterium's ongoing genomic evolution, shifting epidemiological patterns, and limitations in current vaccine strategies. These challenges highlight the urgent need to identify novel drug targets and immunogenic candidates to enhance therapeutic and preventive measures against B. pertussis.Methods: Identification of novel drug targets and the detection of immunogenic factors as potential vaccine candidates were performed. Cytoplasmic proteins were evaluated for their similarity to the human proteome, metabolic pathways, and gut microbiota. On the other hand, surface-exposed proteins were evaluated as immunogenic targets using a reverse vaccinology approach. A multi-epitope vaccine (MEV) was designed based on the immunogenic linear B-cell epitopes of three autotransporters and the beta domain of SphB2 as a scaffold for MEV. Molecular docking, immune simulation results, and molecular dynamics simulations were performed to evaluate the binding affinity and feasibility of interaction between chimeric MEVs and immune receptors.Results: Six proteins were identified as excellent potential drug targets, including elongation factor P (WP_003810194.1), Aspartate kinase (WP_010930633.1), 50S ribosomal protein L21 (WP_003807462.1), Homoserine dehydrogenase (WP_003813074.1), Carboxynorspermidine decarboxylase (WP_003814461.1), and PTS sugar transporter subunit IIA (WP_010929966.1). On the other hand, reverse vaccinology identified nine immunogenic proteins, including BapA (WP_010930805.1), BrkA (WP_010931506.1), SphB2 (WP_041166323.1), TcfA (WP_010930243.1), FliK (WP_041166144.1), Fimbrial protein (WP_010930199.1), TolA (WP_010931418.1), DD-metalloendopeptidase (WP_003811022.1), and an I78 family peptidase inhibitor protein (WP_003812179.1). SphB2-based MEV was designed using six linear B-cell epitopes of the extracellular loops of the autotransporters. The binding affinity and feasibility of the interaction between MEV and TLR2, TLR4, and HLA-DR-B were computationally confirmed by molecular dynamics.Conclusion: It appears that proteins involved in translation and metabolism can be considered novel drug targets. Furthermore, this study highlights autotransporter proteins as promising immune targets. There is no doubt that experimental work should be conducted to confirm the results in the future.
Keywords: Bordetella pertussis, pertussis resurgence, Immunogenic targets, Multi-epitope vaccine, Autotransporter proteins, reverse vaccinology
Received: 02 Feb 2025; Accepted: 21 Apr 2025.
Copyright: © 2025 Khazani Asforooshani, Noori Goodarzi, Shahbazi, Rezaie Rahimi, Mahdavian, Rohani and Badmasti. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Farzad Badmasti, Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran., Tehran, Alborz, Iran
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.