ORIGINAL RESEARCH article
Front. Bioinform.
Sec. Integrative Bioinformatics
Volume 5 - 2025 | doi: 10.3389/fbinf.2025.1665892
Identification of ordinal relations and alternative suborders within high-dimensional molecular data
Provisionally accepted- 1Universitat Ulm, Ulm, Germany
- 2University of Ulm, Ulm, Germany
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Numerous biological systems exhibit ordinal connections between categories. Developmental and time-series information inherently depict sequences like 'early', 'intermediate', and 'late' phases, showing that these specific processes follow a progression. Ordinal classification techniques are often applied in biological and medical contexts, ranging from the evaluation of pain intensity, to the detection of evolving diseases, such as cancer. These ranking systems may assist clinicians in establishing diagnoses and developing tailored treatment plans. For instance, tumor staging might guide early detection strategies and targeted therapies, improving patient outcomes. However, applying ordinal classification to biological data presents considerable challenges. In addition to their high dimensionality, these datasets can be highly heterogeneous, often reflecting branching processes that occur simultaneously during progression. Factors such as intratumoral diversity, asynchronous progress, and context-specific signaling activity may interfere with the identification of such alternative development routes. To address these challenges, we propose a framework for uncovering ordinal relationships within molecular data. Specifically, directed threshold classifiers are introduced as base learners for ordinal classifier cascades, enabling the detection of both total and partial orderings between molecular states. This approach preserves the inherent ordinal structure by projecting high-dimensional data onto one single dimension while simultaneously decreasing complexity. Additionally, the distinct features of the resulting thresholds allow the prediction of potential alternative paths among the suborders.
Keywords: Alternative progression patterns, Classifier cascades, Directed threshold classifiers, Ordinal classification, High-throughputdata
Received: 14 Jul 2025; Accepted: 13 Oct 2025.
Copyright: © 2025 Stolnicu, Eckhardt-Bellmann and Kestler. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Hans A. Kestler, hans.kestler@uni-ulm.de
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.