TECHNOLOGY AND CODE article
Front. Bioinform.
Sec. Single Cell Bioinformatics
Celline: A flexible tool for one-step retrieval and integrative analysis of public single-cell RNA sequencing data
Provisionally accepted- 1Waseda Daigaku, Shinjuku, Japan
- 2Tokyo University of Agriculture, Tokyo, Japan
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Single-cell RNA sequencing (scRNA-seq) has generated a rapidly expanding collection of public datasets that provide insight into development, disease, and therapy. However, researchers lack an end-to-end solution for seamlessly retrieving, preprocessing, integrating, and analyzing these data because existing tools address only isolated steps and require manual curation of accessions, metadata, and technical variability, known as batch effects. In this study, we developed Celline, a Python package that executes an entire workflow using a single-line commands per step. Celline automatically gathers raw single-cell RNA-seq data from multiple public repositories and extracts metadata using large language models. It then wraps established tools, including Scrublet for doublet removal, Seurat and Scanpy for quality control and cell-type annotation, Harmony and scVI for batch correction, and Slingshot for trajectory inference, into one-line commands, enabling seamless integrative analyses. To validate Celline-acquired data quality and the integrated framework's practical utility, we applied it to two mouse brain cortex datasets from embryonic days 14.5 and 18. Technical validation demonstrated that Celline successfully retrieved data, standardized metadata, and enabled standard analyses that removed low-quality cells, annotated 11 major cell types, improved integration quality (scIB score +0.22), and completed trajectory analysis. Thus, Celline transforms scattered public scRNA-seq resources into unified, analysis-ready datasets with minimal effort. Its modular design allows pipeline extension, encourages community-driven advances, and accelerates the discovery of single-cell data.
Keywords: single-cell RNA-seq, Public databases, pipeline, integration, python, data management
Received: 12 Aug 2025; Accepted: 21 Nov 2025.
Copyright: © 2025 Sato, Asahi and Kataoka. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Kosuke Kataoka, kataokak@go.tuat.ac.jp
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
