ORIGINAL RESEARCH article
Front. Bioinform.
Sec. Integrative Bioinformatics
Volume 5 - 2025 | doi: 10.3389/fbinf.2025.1687687
Multimodal Knowledge Expansion Widget Powered by Plant Protein Phosphorylation Database and ChatGPT
Provisionally accepted- 1University of Missouri, Columbia, United States
- 2University of Nebraska-Lincoln, Lincoln, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Biological databases are essential for providing curated knowledge, but their rigid data structures and restrictive query formats often limit flexible and exploratory user interactions. In the field of plant phosphorylation, manually curated and reviewed data represent only a small portion of the available knowledge, and users often seek information that goes beyond what is provided in structured databases. While large language models (LLMs) like ChatGPT-4o possess extensive contextual knowledge, integrating this capability into bioinformatics tools remains an open challenge. Here, we present a multimodal question-answering widget that integrates ChatGPT-4o with our Plant Protein Phosphorylation Database (P3DB). This system supports natural language queries and dynamic prompt formulation, enabling users to explore phosphorylation events, kinase-substrate relationships, and protein-protein interactions through a global entry. In another application, the widget leverages ChatGPT's image interpretation functionality to extract regulatory pathways and phosphorylation markers from complex scientific figures. To build this widget effectively, we have explored multiple prompt strategies, including one-step, two-step, few-shot, and image-cropping techniques, demonstrating their impact on output accuracy and consistency. In addition, recent multimodal LLMs such as ChatGPT-5 and Gemini 1.5 have demonstrated comparable capabilities and adaptability when applied to our test cases and the developed widgets. Together, our application widget and results highlight the development of the ChatGPT-P3DB integration as a system that enhances user This is a provisional file, not the final typeset article accessibility, enables visual extraction, and extends the current utility of biological knowledgebases through a flexible and adaptive framework. Our "ChatGPT-P3DB" is open-source and can be accessed on GitHub (https://github.com/yao-laboratory/p3db-chat). The frontend interface, "P3DB askAI" web module, can be accessed freely through https://www.p3db.org/ask-ai.
Keywords: multimodality1, large language mode2, plant protein phosphorylation3, information retrieva4, pathway identification5
Received: 18 Aug 2025; Accepted: 02 Oct 2025.
Copyright: © 2025 Xu, Yu, Khadakkar, Xie, Xu and Yao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Dong Xu, xudong@missouri.edu
Qiuming Yao, qyao3@unl.edu
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.