Your new experience awaits. Try the new design now and help us make it even better

MINI REVIEW article

Front. Cell. Neurosci., 19 December 2025

Sec. Cellular Neurophysiology

Volume 19 - 2025 | https://doi.org/10.3389/fncel.2025.1738489

This article is part of the Research TopicMemory processing in health and disease: linking behavioral, circuits, and molecular scales.View all 9 articles

Parvalbumin interneurons: the dark and bright sides of a key playmaker of neural circuits and behavior

  • 1INMED, INSERM, Aix-Marseille University, Marseille, France
  • 2Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland

With their morphological and electrophysiological properties as well as exceptional connectivity, parvalbumin interneurons play a major role in the dynamics of the neural circuits of the hippocampus and cortex, along with associated cognitive functions. Their dysfunction, which is sometimes reversible, contributes to significant disruptions in network activity and behavioral deficits related to various diseases such as epilepsies or neuropsychiatric disorders. In this Mini Review, we present these parvalbumin interneurons, their characteristics, pathophysiological roles, and propose avenues for future investigations.

1 Introduction

Parvalbumin interneurons (PVIs) constitute a small fraction of the total neurons of the hippocampus and cortex (2.5%–10%) (Houser, 2007; Bezaire and Soltesz, 2013; Druga et al., 2023). Even within the heterogeneous population of GABAergic inhibitory cells, PVIs are present in numbers comparable to or even lower than other subtypes, such as interneurons expressing VIP or NPY in the hippocampus (Rudy et al., 2011; Pelkey et al., 2017). However, PVIs receive disproportionate attention, which is explained by their many remarkable features in healthy conditions, that enable them to orchestrate network dynamics and control associated behaviors. Consequently, the artificial manipulation (using cell-specific genetic tools) or the alterations (in rodent models related to diseases) of PVI properties can lead to disruption of neuronal activity, the onset of epileptic seizures, and failure of cognitive functions. Here, we describe the exceptional characteristics of PVIs, their contribution to normal function and disease, as well as therapeutic approaches that target them.

2 Hippocampal and cortical PVIs: from the physiology to disease

2.1 PVIs under healthy condition

With their somata particularly concentrated in certain subregions, such as the stratum pyramidale of the Ammon horns, the edges of the granular layer in the dentate gyrus, and layers L2/3 and L5 of the cortex, PVIs display many distinctive properties, detailed below according to the traditional nomenclature used to classify interneurons (Ascoli et al., 2008; Figure 1).

FIGURE 1
Schematic representation of PVIs in healthy or disease conditions. Under healthy conditions, PVIs express biochemical markers such as parvalbumin and are preferentially location in certain layers of the hippocampus and cortex. The axon of PVIs is often basket-shaped, myelinated, and innervate hundreds of neurons at the perisomatic compartment. Finally, PVIs often have a fast-spiking profile and regulate oscillations and behavior. In pathological conditions, the expression of parvalbumin, as well as the placement, myelination, synaptic connections, and excitability of PVIs are often altered, which is associated with a disruption of oscillations and cognition, and even seizures.

Figure 1. The dark and bright sides of PVIs.

2.1.1 PVIs morphologies

Parvalbumin interneurons in the hippocampus and cortex are divided into several subcategories, based on their axonal arborization. The two best-documented categories are basket cells (or BCs) and chandelier cells (also called “axo-axonic” cells, or AACs).

In Ammon’s Horn of the hippocampus, parvalbumin-expressing BCs have a large pyramid or spindle-shaped soma. Generally lacking spines, their dendrites extend from the alveus to the stratum lacunosum-moleculare. Emerging from the soma or a primary dendrite, their axons form numerous collaterals in the pyramidal layer, giving it a basket-like appearance, with some incursions into the strata oriens and radiatum (Pelkey et al., 2017).

In the dentate gyrus of the hippocampus, BCs have a similar morphology, extending their axons into the granular layer and their dendrites from the outer molecular layer to the hilus (Koh et al., 1995). Unlike Ammon’s Horn, dentate BCs are covered with dendritic spines, the density of which is regulated by experience (Kaufhold et al., 2024).

In the cortex, parvalbumin-positive BCs have a generally multipolar dendrite and an axon that forms a plexus, which can be large and cover several cortical layers and columns or be smaller and restricted to a single layer (Kubota, 2014; Tremblay et al., 2016).

In CA1, AACs have axons that branch out into the pyramidal layer and the superficial part of the stratum oriens (Li et al., 1992). The main branches often extend horizontally, with vertically arranged terminals and rows of synaptic boutons, giving them a distinctive candelabrum appearance (Pelkey et al., 2017). Their dendrites extend either radially from the alveus to the stratum lacunosum-moleculare (Li et al., 1992) or horizontally, spreading exclusively in the stratum oriens, parallel to the pyramidal layer, over several hundred micrometers (Ganter et al., 2004). AACs with similar morphology have been identified in CA3, the dentate gyrus, and the cortex (Somogyi, 1977; Buhl et al., 1994; Viney et al., 2013).

Parvalbumin can be expressed by other morphological subtypes, such as the bistratified cells (BiS) of Ammon’s horns (Halasy et al., 1996; Pelkey et al., 2017), the O-LM cells (Oriens lacunosum-moleculare) of Ammon’s horns and their equivalent in the dentate gyrus, called “HIPP” for “hilar perforant path associated cells” (McBain et al., 1994; Freund and Buzsáki, 1996; Pelkey et al., 2017), the multipolar bursting cells of the cortex (Blatow et al., 2003), as well as long-distance projection neurons of the hippocampus (Jinno et al., 2007; Wick et al., 2017; Yen et al., 2022) and the cortex (Bertero et al., 2020). It should be noted that the axons of PVIs in the hippocampus are often surrounded by a myelin sheath (Stedehouder et al., 2017).

2.1.2 Connectivity

While some PVI subtypes preferentially form synapses on the dendrites of excitatory cells, such as hippocampal O-LM or BiSs (Pelkey et al., 2017), the majority of hippocampal and cortical PVIs target the perisomatic compartment of numerous pyramidal cells and efficiently control their output (Freund and Katona, 2007; Stokes and Isaacson, 2010). AACs exclusively contact the initial segment of the axon of hundreds of pyramids in the hippocampus (Li et al., 1992) and cortex (Wang Y. et al., 2016). Parvalbumin-expressing BCs form synapses with the soma and proximal dendrites of 1500–2500 pyramids in CA1 of the hippocampus, forming half a dozen synapses with each of them (Freund and Buzsáki, 1996; Pelkey et al., 2017). In the cortex, each BC innervates 200–1000 pyramids with 5–15 terminal boutons (Karube et al., 2004; Kubota, 2014). The extensive dendrites of CA1 BCs receive a large number of convergent excitatory inputs, both local (from pyramidal neurons) and distant (e.g., entorhinal cortex) (Gulyás et al., 1999; Tukker et al., 2013). Interestingly, parvalbumin-containing BCs inhibit the deep pyramids of CA1 more strongly but receive more excitation from pyramids located in the superficial part of the pyramidal stratum. Similarly, PVIs tend to innervate pyramidal neurons projecting to the amygdala but receive preferential excitation from pyramids projecting to the prefrontal cortex (Lee et al., 2014). In the cortex and other structures such as the presubiculum (Peng et al., 2021), although observations suggest that PVIs randomly innervate surrounding pyramidal cells and receive excitatory inputs from most nearby pyramids, it appears that the strongest reciprocal connections occur between PVIs and pyramids participating in the same functional process (Packer and Yuste, 2011; Znamenskiy et al., 2024).

2.1.3 Biochemical markers

In PVIs, the expression levels of the calcium-binding parvalbumin protein itself differ depending on the morphological subtype. Thus, parvalbumin labeling is weaker in BiSs and O-LM cells in the hippocampus than in AACs or BCs (Ferraguti et al., 2004). Key to PVI function (Zhang et al., 2025), parvalbumin expression vary depending on experience (Donato et al., 2013) or neuronal activity (Patz et al., 2004; Rupert and Shea, 2022). This form of plasticity appears to be related to perineuronal nets (marked by aggrecan or vicia villosa agglutinin) that mainly envelop PVIs (Yamada et al., 2015).

In addition, PVIs, particularly BCs in the hippocampus and cortex, are characterized by the compartmentalized expression of a combination of proteins associated with rapid, strong, and efficient signaling (Hu et al., 2014). Thus, PVI possesses calcium-permeable AMPA-type glutamatergic receptors that lacks GluA2, but contains GluA1 and GluA4 subunits, as well as GABRA1-containing GABAergic receptors, which are associated with fast-acting excitatory and inhibitory postsynaptic currents (Geiger et al., 1995, 1997; Bartos et al., 2002; Hong et al., 2024). Similarly, the supercritical density of NaV1.1 and NaV1.6 sodium channels along axons, combined with myelination (Micheva et al., 2021), allows for rapid propagation of action potentials (Ogiwara et al., 2007; Lorincz and Nusser, 2008; Hu et al., 2014). At the end of the chain, presynaptic calcium channels of the Cav2.1 or P/Q types, closely coupled to the calcium sensor Synaptotagmin 2, enable rapid and precise secretion of the neurotransmitter GABA (Hefft and Jonas, 2005; Pang et al., 2006; Zaitsev et al., 2007; Bucurenciu et al., 2010; Eggermann et al., 2011; Sommeijer and Levelt, 2012; Rossignol et al., 2013; Lee et al., 2014).

Interestingly, certain protein markers can be used to distinguish between morphological subtypes of PVIs, particularly in the hippocampus. For example, somatostatin has been identified in BiSs and O-LMs (Klausberger et al., 2003, 2004), SATB1 in BCs and BiSs (Viney et al., 2013), NPY in BiSs (Klausberger et al., 2003), and mGluR1α in O-LMs (Ferraguti et al., 2004). AACs of the dentate gyrus are positive for PTHLH and Unc5b (Paul et al., 2017; Proddutur et al., 2023).

2.1.4 Electrophysiological properties and in vivo activity

Parvalbumin BCs of the cortex and hippocampus, as well as BiS and AACs in the hippocampus, are often correlated with a fast-spiking pattern (Hu et al., 2014). This mode is defined as the ability of PVIs recorded ex vivo to generate, following a membrane depolarization plateau, a continuous train of high-frequency action potentials without accommodation (Wang B. et al., 2016). A “stutter firing” pattern, characterized by bursts of action potentials separated by random periods of silence, has been observed in some BiSs (Pawelzik et al., 2002). With distinct electrophysiological characteristics (Tricoire et al., 2011), including strong adaptation of action potential discharge, hippocampal O-LMs rarely exceed an action potential frequency of 50 Hz (Pelkey et al., 2017). The preferential discharge of this type of interneuron occurs in the theta band (Gloveli et al., 2005), in a kainate receptor-dependent manner (Goldin et al., 2007). In the cortex, the multipolar bursting cells are distinguished by an initial burst of action potentials in response to a depolarizing step (Blatow et al., 2003).

Hippocampal PVI subpopulations can be differentiated in vivo according to the spatiotemporal dynamics of their activity in relation to oscillations, which play a role in the computation of behavior (Klausberger and Somogyi, 2008; Fernandez-Ruiz et al., 2023; Huang et al., 2024) and are found to be altered under pathological conditions (Uhlhaas and Singer, 2010). For instance, in awake animals, CA1 AACs fire preferentially during the middle of the descending phases of running-associated theta rhythms (5–10 Hz), while parvalbumin-expressing BCs and BiSs discharge later (Varga et al., 2014). During fast oscillations such as gamma related to running periods (25–90 Hz) and ripples recorded during rest (90–200 Hz), BCs preferentially discharge earliest during oscillatory cycles, followed by BiSs, AACs and O-LM cells (Royer et al., 2012; Varga et al., 2012, 2014; Viney et al., 2013). Double-projecting cells, a fraction of which express parvalbumin, discharge during the trough of theta cycles and just after pyramidal neurons during gamma waves recorded in anesthetized animals (Jinno et al., 2007). In the CA2 and CA3 regions of the hippocampus, PVIs also participate in ripple, theta, and gamma oscillations, but with a different discharge timing than those in CA1 (Tukker et al., 2013; Viney et al., 2013).

2.1.5 Functional properties

The development of genetic tools, based on Cre recombinase (Tsien et al., 1996), which allow selective targeting of biochemical subtypes of inhibitory neurons (Taniguchi et al., 2011) combined with strategies for manipulating neuronal activity using light with optogenetics (Boyden et al., 2005; Deisseroth, 2011) or under the effect of an inert ligand using chemogenetics (Armbruster et al., 2007; Roth, 2016), has enabled the investigation of the functional role of PVI (Raven and Aton, 2021; Tzilivaki et al., 2023).

In the hippocampus, the activity of PVIs controls the synchronization and timing of pyramidal cell firing, as well as the emergence of ripple, theta, or gamma oscillatory activity (Korotkova et al., 2010; Royer et al., 2012; Nguyen et al., 2014; Amilhon et al., 2015; Ognjanovski et al., 2017; Xia et al., 2017; Antonoudiou et al., 2020). Thus, PVIs in the hippocampus contribute substantially to spatial and working memory, memory consolidation (Korotkova et al., 2010; Donato et al., 2013; Xia et al., 2017), representation of novelty (Hainmueller et al., 2024), sensorimotor gating (Nguyen et al., 2014), and control of anxiety behavior (Tiwari et al., 2024; Volitaki et al., 2024). Interestingly, different facets of the same cognitive process are performed by distinct subpopulations of PVIs (Donato et al., 2015; Hainmueller et al., 2024).

Similarly, cortical PVIs promote the synchronization of excitatory cells (Jang et al., 2020), narrow the temporal windows of pyramidal neuron response to sensory afferent (Pedroncini et al., 2024), and orchestrate oscillations (Cardin et al., 2009; Sohal et al., 2009). Consequently, PVIs contributes to a wide variety of cortical functions, such as sensory processing (Yang et al., 2017), memory (Xia et al., 2017), social discrimination (Deng et al., 2019), emotion recognition (Fujima et al., 2025), avoidance behaviors (Ho et al., 2025), and attention (Kim et al., 2016).

In conclusion, PVIs display specific morphophysiological characteristics that enable them to act as essential components of the networks. However, these key interneurons are highly vulnerable to pathological factors (Ruden et al., 2021) and their dysfunction can have harmful effects on the functions of the hippocampus or cortex.

2.2 PVIs under pathological conditions

2.2.1 PVIs under artificial manipulation conditions

It is possible to use genetic tools to manipulate the molecular and electrophysiological properties or connectivity of PVIs in the hippocampus and cortex of mice in order to render them dysfunctional. These disruptions are sufficient to cause activity and network disorders like those observed in neurological disorders such as schizophrenia, autism, and epilepsy.

Thus, chemogenetic or optogenetic inhibition (Nguyen et al., 2014; Hu et al., 2025), depletion of parvalbumin expression (Wöhr et al., 2015), mitochondrial dysfunction (Inan et al., 2016), or deletions of Erbb4 (del Pino et al., 2013), D2-type dopamine receptors (Tomasella et al., 2018), type 5 metabotropic glutamate receptors (Barnes et al., 2015) or NMDA-type glutamate receptors (Korotkova et al., 2010) specifically in PVIs in the hippocampus or cortex lead to disturbances in oscillatory dynamics (e.g., increased or decreased theta and gamma activity) and to cognitive deficits (e.g., memory deficits, impaired locomotion, abnormal emotional and social behavior, impaired sensory-motor gating) that mimic symptoms identified in patients with schizophrenia or autism. Even more spectacularly, permanent silencing of PVIs in the subiculum, a region of the hippocampal formation, is sufficient to induce recurrent spontaneous limbic seizures in mice, a pathological feature reminiscent of temporal lobe epilepsy (Drexel et al., 2017).

Taken together, these data suggest that dysfunction of PVIs was sufficient to cause the development of symptoms associated with neurological diseases. This prompted the scientific community to take the following step: to investigate models that accurately reproduce the symptoms of neurological diseases to determine whether PVIs in the hippocampus and cortex were altered and whether they could represent a valid target for more specific therapeutic strategies.

2.2.2 Parvalbumin interneuron in disease models

Parvalbumin interneurons dysfunction has been identified in the cortex and hippocampus of many models that reliably reproduce the causes of neurological diseases (environmental, genetic, or a combination of both) as well as the symptoms identified in patients.

Thus, the pathological features of neurodevelopmental disorders such as autism and schizophrenia can be mimicked in rodents, for instance by perinatal immune activation (reproducing a microbial infection during development) or by the deletion of the DISC1 gene (linked to schizophrenia) or FMR1 gene (Fragile X syndrome) or the 22q11.2 locus (DiGeorge syndrome). In addition to frequent alterations in rhythmic activity and behavior, these models are often correlated with a disruption of the properties of PVIs (Figure 1), such as a loss of PVIs (Pignataro et al., 2023), a change in the expression and plasticity of parvalbumin itself (Sauer et al., 2015; Mukherjee et al., 2019), a reduction in the expression of ion channels (Qi et al., 2025), a reduction in the number of excitatory inputs received by PVIs (Sauer et al., 2015), a reduction in the number of inhibitory inputs received by pyramids from PVIs (Sauer et al., 2015), as well as misplacement (Meechan et al., 2012), hypomyelination (Maas et al., 2020; He et al., 2025), disruption of ex vivo excitability (Marissal et al., 2018; Hijazi et al., 2023), and reduction of sensory-evoked activity in vivo (Goel et al., 2018). Interestingly, specific chemoactivation of PVIs is sufficient to restore alterations in cortical and hippocampal network activity in vivo, as well as cognitive alterations in mouse models of environmentally or genetically induced neuropsychiatric disorders (Goel et al., 2018; Marissal et al., 2018; Mukherjee et al., 2019; Arime et al., 2023; Pignataro et al., 2023).

In the case of epilepsy, temporal lobe epilepsy (TLE) models are probably the most commonly used. These models are often based on an insult in the form of prolonged seizures (or Status Epilepticus) induced by the administration of kainate or pilocarpine. After a latency this leads to the emergence of epileptic seizures (primarily in the in the hippocampus, which is the main epileptic focus in TLE), and behavioral comorbidities. In these models, many alterations affect the PVIs of the hippocampus. Thus, some of the PVIs degenerate during the latent phases of the disease (Dinocourt et al., 2003), although other publications suggest that they may be relatively spared (Shuman et al., 2020; Matringhen et al., 2025). The survivors undergo changes in their morphological and electrophysiological properties. This is reflected in particular by the sprouting of the axons of commissurally-projecting PVIs (Wick et al., 2017) and by the decrease in their excitability in the dentate gyrus of TLE mouse models (Proddutur et al., 2023). Interestingly, a decrease in the excitability of PVIs in the hippocampus and cortex has also been found in mouse models of genetic forms of epilepsy (e.g., deletion of voltage-gated sodium channel NaV1.1 linked to Dravet syndrome) (Tai et al., 2014; Favero et al., 2018). On this basis, several therapeutic strategies have been tested to compensate for the loss of interneurons or restore the properties of PVIs (Marissal, 2021). For example, the transplantation of stem cells from the medial ganglionic eminence (Upadhya et al., 2019), a substantial proportion of which differentiate into PVIs, reduces seizures and improves the behavior of mice. Similarly, optogenetic stimulation of PVIs, sometimes coupled with a closed-loop system (Krook-Magnuson et al., 2013), can have a beneficial effect on seizures and behavioral deficits (Kim et al., 2020), although activation of PVIs can also have paradoxically pro-epileptic effects (Lévesque et al., 2019).

3 Discussion

Parvalbumin interneurons possess exceptional morphophysiological properties that enable them to contribute significantly to the dynamics of cortical and hippocampal networks, as well as to behavior. Their importance in healthy conditions partly explains why their malfunction is frequently found to be associated with disease.

However, the respective pathophysiological roles of each heterogeneous subtypes of PVIs are poorly understood and should be explored in the future. Recently, tools have become available to selectively target certain subtypes, such as AACs using strategies based on the PTHLH or Unc5b markers (Raudales et al., 2024), and enabled the identification of the changes undergone by AACs after an epileptic insult (Proddutur et al., 2023).

Moreover, it remains to be determined how PVI dysfunction is affected by and affects other elements of the inhibitory microcircuits of the hippocampus and cortex in pathological conditions. Computational and experimental data suggest that PVIs dynamically cooperate under non-pathological conditions with other interneuron subtypes such as calretinin-, VIP-, somatostatin, or CCK-containing interneurons to modulate cortical and hippocampal plasticity, activity and behavior in a manner dependent on the context or behavioral state (Wang et al., 2004; Jang et al., 2020; Udakis et al., 2020; Dudok et al., 2021; Bos et al., 2025; Onorato et al., 2025; Parker et al., 2025). How this “division of labor” between interneurons is disrupted in conditions of disease is an important avenue for investigation with the aim of developing more specific and effective therapeutic strategies.

Author contributions

EW: Writing – original draft, Writing – review & editing. CQ: Writing – review & editing, Writing – original draft, Funding acquisition, Project administration, Resources, Supervision. TM: Project administration, Supervision, Writing – review & editing, Funding acquisition, Writing – original draft, Resources.

Funding

The author(s) declared that financial support was received for this work and/or its publication. This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM) and its International Research Project Program, the Universities of Geneva and Aix-Marseille and Geneva, Neuroschool and NeuroMarseille, the Foundation A*Midex (AMX-22-RE-AB-161) and the French government under the “France 2030” program via A*Midex (Initiative d’Excellence d’Aix-Marseille Université, AMX-19-IET-004), and ANR funding (ANR-17-EURE-002).

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Amilhon, B., Huh, C. Y. L., Manseau, F., Ducharme, G., Nichol, H., Adamantidis, A., et al. (2015). Parvalbumin interneurons of hippocampus tune population activity at theta frequency. Neuron 86, 1277–1289. doi: 10.1016/j.neuron.2015.05.027

PubMed Abstract | Crossref Full Text | Google Scholar

Antonoudiou, P., Tan, Y. L., Kontou, G., Upton, A. L., and Mann, E. O. (2020). Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations. J. Neurosci. 40, 7668–7687. doi: 10.1523/JNEUROSCI.0261-20.2020

PubMed Abstract | Crossref Full Text | Google Scholar

Arime, Y., Saitoh, Y., Ishikawa, M., Kamiyoshihara, C., Uchida, Y., Fujii, K., et al. (2023). Activation of prefrontal parvalbumin interneurons ameliorates working memory deficit even under clinically comparable antipsychotic treatment in a mouse model of schizophrenia. Neuropsychopharmacology 49:720. doi: 10.1038/s41386-023-01769-z

PubMed Abstract | Crossref Full Text | Google Scholar

Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S., and Roth, B. L. (2007). Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. U. S. A. 104, 5163–5168. doi: 10.1073/pnas.0700293104

PubMed Abstract | Crossref Full Text | Google Scholar

Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., et al. (2008). Petilla terminology: Nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568. doi: 10.1038/nrn2402

PubMed Abstract | Crossref Full Text | Google Scholar

Barnes, S., Pinto-Duarte, A., Kappe, A., Zembrzycki, A., Metzler, A., Mukamel, E., et al. (2015). Disruption of mGluR5 in parvalbumin-positive interneurons induces core features of neurodevelopmental disorders. Mol. Psychiatry 20, 1161–1172. doi: 10.1038/mp.2015.113

PubMed Abstract | Crossref Full Text | Google Scholar

Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J. R. P., et al. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. U. S. A. 99, 13222–13227. doi: 10.1073/pnas.192233099

PubMed Abstract | Crossref Full Text | Google Scholar

Bertero, A., Zurita, H., Normandin, M., and Apicella, A. J. (2020). Auditory long-range parvalbumin cortico-striatal neurons. Front. Neural Circuits 14:45. doi: 10.3389/fncir.2020.00045

PubMed Abstract | Crossref Full Text | Google Scholar

Bezaire, M. J., and Soltesz, I. (2013). Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23, 751–785. doi: 10.1002/hipo.22141

PubMed Abstract | Crossref Full Text | Google Scholar

Blatow, M., Rozov, A., Katona, I., Hormuzdi, S. G., Meyer, A. H., Whittington, M. A., et al. (2003). A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38, 805–817. doi: 10.1016/S0896-6273(03)00300-3

PubMed Abstract | Crossref Full Text | Google Scholar

Bos, H., Miehl, C., Oswald, A.-M. M., and Doiron, B. (2025). Untangling stability and gain modulation in cortical circuits with multiple interneuron classes. eLife 13:R99808. doi: 10.7554/eLife.99808

PubMed Abstract | Crossref Full Text | Google Scholar

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268. doi: 10.1038/nn1525

PubMed Abstract | Crossref Full Text | Google Scholar

Bucurenciu, I., Bischofberger, J., and Jonas, P. (2010). A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse. Nat. Neurosci. 13, 19–21. doi: 10.1038/nn.2461

PubMed Abstract | Crossref Full Text | Google Scholar

Buhl, E. H., Han, Z. S., Lorinczi, Z., Stezhka, V. V., Karnup, S. V., and Somogyi, P. (1994). Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J. Neurophysiol. 71, 1289–1307. doi: 10.1152/jn.1994.71.4.1289

PubMed Abstract | Crossref Full Text | Google Scholar

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667. doi: 10.1038/nature08002

PubMed Abstract | Crossref Full Text | Google Scholar

Deisseroth, K. (2011). Optogenetics. Nat. Methods 8, 26–29. doi: 10.1038/nmeth.f.324

PubMed Abstract | Crossref Full Text | Google Scholar

del Pino, I., García-Frigola, C., Dehorter, N., Brotons-Mas, J. R., Alvarez-Salvado, E., and Martínez, et al. (2013). Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron 79, 1152–1168. doi: 10.1016/j.neuron.2013.07.010

PubMed Abstract | Crossref Full Text | Google Scholar

Deng, X., Gu, L., Sui, N., Guo, J., and Liang, J. (2019). Parvalbumin interneuron in the ventral hippocampus functions as a discriminator in social memory. Proc. Natl. Acad. Sci. U. S. A. 116:16583. doi: 10.1073/pnas.1819133116

PubMed Abstract | Crossref Full Text | Google Scholar

Dinocourt, C., Petanjek, Z., Freund, T. F., Ben-Ari, Y., and Esclapez, M. (2003). Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J. Comp. Neurol. 459, 407–425. doi: 10.1002/cne.10622

PubMed Abstract | Crossref Full Text | Google Scholar

Donato, F., Chowdhury, A., Lahr, M., and Caroni, P. (2015). Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron 85, 770–786. doi: 10.1016/j.neuron.2015.01.011

PubMed Abstract | Crossref Full Text | Google Scholar

Donato, F., Rompani, S. B., and Caroni, P. (2013). Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272–276. doi: 10.1038/nature12866

PubMed Abstract | Crossref Full Text | Google Scholar

Drexel, M., Romanov, R. A., Wood, J., Weger, S., Heilbronn, R., Wulff, P., et al. (2017). Selective silencing of hippocampal parvalbumin interneurons induces development of recurrent spontaneous limbic seizures in mice. J. Neurosci. 37, 8166–8179. doi: 10.1523/JNEUROSCI.3456-16.2017

PubMed Abstract | Crossref Full Text | Google Scholar

Druga, R., Salaj, M., and Al-Redouan, A. (2023). Parvalbumin - positive neurons in the neocortex: A review. Physiol. Res. 72:S173. doi: 10.33549/physiolres.935005

PubMed Abstract | Crossref Full Text | Google Scholar

Dudok, B., Klein, P. M., Hwaun, E., Lee, B. R., Yao, Z., Fong, O., et al. (2021). Alternating sources of perisomatic inhibition during behavior. Neuron 109, 997–1012.e9. doi: 10.1016/j.neuron.2021.01.003.

PubMed Abstract | Crossref Full Text | Google Scholar

Eggermann, E., Bucurenciu, I., Goswami, S. P., and Jonas, P. (2011). Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat. Rev. Neurosci. 13, 7–21. doi: 10.1038/nrn3125

PubMed Abstract | Crossref Full Text | Google Scholar

Favero, M., Sotuyo, N. P., Lopez, E., Kearney, J. A., and Goldberg, E. M. (2018). A transient developmental window of fast-spiking interneuron dysfunction in a mouse model of dravet syndrome. J. Neurosci. 38, 7912–7927. doi: 10.1523/JNEUROSCI.0193-18.2018

PubMed Abstract | Crossref Full Text | Google Scholar

Fernandez-Ruiz, A., Sirota, A., Lopes-dos-Santos, V., and Dupret, D. (2023). Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 111, 936–953. doi: 10.1016/j.neuron.2023.02.026

PubMed Abstract | Crossref Full Text | Google Scholar

Ferraguti, F., Cobden, P., Pollard, M., Cope, D., Shigemoto, R., Watanabe, M., et al. (2004). Immunolocalization of metabotropic glutamate receptor 1α (mGluR1α) in distinct classes of interneuron in the CA1 region of the rat hippocampus. Hippocampus 14, 193–215. doi: 10.1002/hipo.10163

PubMed Abstract | Crossref Full Text | Google Scholar

Freund, T. F., and Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus 6, 347–470. doi: 10.1002/(SICI)1098-106319966:4<347::AID-HIPO1>3.0.CO;2-I

Crossref Full Text | Google Scholar

Freund, T. F., and Katona, I. (2007). Perisomatic Inhibition. Neuron 56, 33–42. doi: 10.1016/j.neuron.2007.09.012

PubMed Abstract | Crossref Full Text | Google Scholar

Fujima, S., Sato, M., Nakai, N., and Takumi, T. (2025). Parvalbumin interneurons in the insular cortex control social familiarity and emotion recognition. Cell Rep. 44:116085. doi: 10.1016/j.celrep.2025.116085

PubMed Abstract | Crossref Full Text | Google Scholar

Ganter, P., Szücs, P., Paulsen, O., and Somogyi, P. (2004). Properties of horizontal axo-axonic cells in stratum oriens of the hippocampal CA1 area of rats in vitro. Hippocampus 14, 232–243. doi: 10.1002/hipo.10170

PubMed Abstract | Crossref Full Text | Google Scholar

Geiger, J. R. P., Lübke, J., Roth, A., Frotscher, M., and Jonas, P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron–interneuron synapse. Neuron 18, 1009–1023. doi: 10.1016/S0896-6273(00)80339-6

PubMed Abstract | Crossref Full Text | Google Scholar

Geiger, J. R. P., Melcher, T., Koh, D.-S., Sakmann, B., Seeburg, P. H., Jonas, P., et al. (1995). Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204. doi: 10.1016/0896-6273(95)90076-4

PubMed Abstract | Crossref Full Text | Google Scholar

Gloveli, T., Dugladze, T., Saha, S., Monyer, H., Heinemann, U., Traub, R. D., et al. (2005). Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J. Physiol. 562, 131–147. doi: 10.1113/jphysiol.2004.073007

PubMed Abstract | Crossref Full Text | Google Scholar

Goel, A., Cantu, D. A., Guilfoyle, J., Chaudhari, G. R., Newadkar, A., Todisco, B., et al. (2018). Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nat. Neurosci. 21, 1404–1411. doi: 10.1038/s41593-018-0231-0

PubMed Abstract | Crossref Full Text | Google Scholar

Goldin, M., Epsztein, J., Jorquera, I., Represa, A., Ben-Ari, Y., Crépel, V., et al. (2007). Synaptic kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency. J. Neurosci. 27, 9560–9572. doi: 10.1523/JNEUROSCI.1237-07.2007

PubMed Abstract | Crossref Full Text | Google Scholar

Gulyás, A. I., Megıas, M., Emri, Z., and Freund, T. F. (1999). Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097. doi: 10.1523/JNEUROSCI.19-22-10082.1999

PubMed Abstract | Crossref Full Text | Google Scholar

Hainmueller, T., Cazala, A., Huang, L.-W., and Bartos, M. (2024). Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice. Nat. Commun. 15:714. doi: 10.1038/s41467-024-44882-3

PubMed Abstract | Crossref Full Text | Google Scholar

Halasy, K., Buhl, E. H., Lörinczi, Z., Tamás, G., and Somogyi, P. (1996). Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus 6, 306–329. doi: 10.1002/(SICI)1098-106319966:3<306::AID-HIPO8>3.0.CO;2-K

Crossref Full Text | Google Scholar

He, Y., Li, J., Zheng, W., Liu, J., Dong, Z., Yang, L., et al. (2025). Hypomyelination in autism-associated neuroligin-3 mutant mice impairs parvalbumin interneuron excitability, gamma oscillations, and sensory discrimination. Nat. Commun. 16:6382. doi: 10.1038/s41467-025-61455-0

PubMed Abstract | Crossref Full Text | Google Scholar

Hefft, S., and Jonas, P. (2005). Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nat. Neurosci. 8, 1319–1328. doi: 10.1038/nn1542

PubMed Abstract | Crossref Full Text | Google Scholar

Hijazi, S., Smit, A. B., and van Kesteren, R. E. (2023). Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer’s disease. Mol. Psychiatry 28, 4954–4967. doi: 10.1038/s41380-023-02168-y

PubMed Abstract | Crossref Full Text | Google Scholar

Ho, Y.-Y., Yang, Q., Boddu, P., Bulkin, D. A., and Warden, M. R. (2025). Infralimbic parvalbumin neural activity facilitates cued threat avoidance. eLife 12:R91221. doi: 10.7554/eLife.91221

PubMed Abstract | Crossref Full Text | Google Scholar

Hong, I., Kim, J., Hainmueller, T., Kim, D. W., Keijser, J., Johnson, R. C., et al. (2024). Calcium-permeable AMPA receptors govern PV neuron feature selectivity. Nature 635, 398–405. doi: 10.1038/s41586-024-08027-2

PubMed Abstract | Crossref Full Text | Google Scholar

Houser, C. R. (2007). “Interneurons of the dentate gyrus: An overview of cell types, terminal fields and neurochemical identity,” in Progress in brain research, ed. H. E. Scharfman (Amsterdam: Elsevier), 217–811. doi: 10.1016/S0079-6123(07)63013-1

PubMed Abstract | Crossref Full Text | Google Scholar

Hu, H., Gan, J., and Jonas, P. (2014). Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function. Science 345:1255263. doi: 10.1126/science.1255263

PubMed Abstract | Crossref Full Text | Google Scholar

Hu, Y., Feng, Y., Luo, H., Zhu, X.-N., Chen, S., Yang, K., et al. (2025). Dissociation-related behaviors in mice emerge from the inhibition of retrosplenial cortex parvalbumin interneurons. Cell Rep. 44:115086. doi: 10.1016/j.celrep.2024.115086

PubMed Abstract | Crossref Full Text | Google Scholar

Huang, Y.-C., Chen, H.-C., Lin, Y.-T., Lin, S.-T., Zheng, Q., Abdelfattah, A. S., et al. (2024). Dynamic assemblies of parvalbumin interneurons in brain oscillations. Neuron 112, 2600–2613.e5. doi: 10.1016/j.neuron.2024.05.015.

PubMed Abstract | Crossref Full Text | Google Scholar

Inan, M., Zhao, M., Manuszak, M., Karakaya, C., Rajadhyaksha, A. M., Pickel, V. M., et al. (2016). Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiol. Dis. 93, 35–46. doi: 10.1016/j.nbd.2016.04.004

PubMed Abstract | Crossref Full Text | Google Scholar

Jang, H. J., Chung, H., Rowland, J. M., Richards, B. A., Kohl, M. M., and Kwag, J. (2020). Distinct roles of parvalbumin and somatostatin interneurons in gating the synchronization of spike times in the neocortex. Sci. Adv. 6:eaay5333. doi: 10.1126/sciadv.aay5333

PubMed Abstract | Crossref Full Text | Google Scholar

Jinno, S., Klausberger, T., Marton, L. F., Dalezios, Y., Roberts, J. D. B., Fuentealba, P., et al. (2007). Neuronal diversity in GABAergic long-range projections from the hippocampus. J. Neurosci. 27, 8790–8804. doi: 10.1523/JNEUROSCI.1847-07.2007

PubMed Abstract | Crossref Full Text | Google Scholar

Karube, F., Kubota, Y., and Kawaguchi, Y. (2004). Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes. J. Neurosci. 24, 2853–2865. doi: 10.1523/JNEUROSCI.4814-03.2004

PubMed Abstract | Crossref Full Text | Google Scholar

Kaufhold, D., Casas, E. M., de las Ocaña-Fernández, M. D. Á,Cazala, A., Yuan, M., Kulik, A., et al. (2024). Spine plasticity of dentate gyrus parvalbumin-positive interneurons is regulated by experience. Cell Rep. 43:113806. doi: 10.1016/j.celrep.2024.113806

PubMed Abstract | Crossref Full Text | Google Scholar

Kim, H., Ährlund-Richter, S., Wang, X., Deisseroth, K., and Carlén, M. (2016). Prefrontal parvalbumin neurons in control of attention. Cell 164, 208–218. doi: 10.1016/j.cell.2015.11.038

PubMed Abstract | Crossref Full Text | Google Scholar

Kim, H. K., Gschwind, T., Nguyen, T. M., Bui, A. D., Felong, S., Ampig, K., et al. (2020). Optogenetic intervention of seizures improves spatial memory in a mouse model of chronic temporal lobe epilepsy. Epilepsia 61, 561–571. doi: 10.1111/epi.16445

PubMed Abstract | Crossref Full Text | Google Scholar

Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D. B., Cobden, P. M., Buzsáki, G., et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848. doi: 10.1038/nature01374

PubMed Abstract | Crossref Full Text | Google Scholar

Klausberger, T., Márton, L. F., Baude, A., Roberts, J. D. B., Magill, P. J., and Somogyi, P. (2004). Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat. Neurosci. 7, 41–47. doi: 10.1038/nn1159

PubMed Abstract | Crossref Full Text | Google Scholar

Klausberger, T., and Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 321, 53–57. doi: 10.1126/science.1149381

PubMed Abstract | Crossref Full Text | Google Scholar

Koh, D. S., Geiger, J. R., Jonas, P., and Sakmann, B. (1995). Ca(2+)-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus. J. Physiol. 485, 383–402. doi: 10.1113/jphysiol.1995.sp020737

PubMed Abstract | Crossref Full Text | Google Scholar

Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J., and Monyer, H. (2010). NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68, 557–569. doi: 10.1016/j.neuron.2010.09.017

PubMed Abstract | Crossref Full Text | Google Scholar

Krook-Magnuson, E., Armstrong, C., Oijala, M., and Soltesz, I. (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4:1376. doi: 10.1038/ncomms2376

PubMed Abstract | Crossref Full Text | Google Scholar

Kubota, Y. (2014). Untangling GABAergic wiring in the cortical microcircuit. Curr. Opin. Neurobiol. 26, 7–14. doi: 10.1016/j.conb.2013.10.003

PubMed Abstract | Crossref Full Text | Google Scholar

Lee, S.-H., Marchionni, I., Bezaire, M., Varga, C., Danielson, N., Lovett-Barron, M., et al. (2014). Parvalbumin-Positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82, 1129–1144. doi: 10.1016/j.neuron.2014.03.034

PubMed Abstract | Crossref Full Text | Google Scholar

Lévesque, M., Chen, L.-Y., Etter, G., Shiri, Z., Wang, S., Williams, S., et al. (2019). Paradoxical effects of optogenetic stimulation in mesial temporal lobe epilepsy. Ann. Neurol. 86, 714–728. doi: 10.1002/ana.25572

PubMed Abstract | Crossref Full Text | Google Scholar

Li, X. G., Somogyi, P., Tepper, J. M., and Buzsáki, G. (1992). Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus. Exp. Brain Res. 90, 519–525. doi: 10.1007/BF00230934

PubMed Abstract | Crossref Full Text | Google Scholar

Lorincz, A., and Nusser, Z. (2008). Cell-Type-Dependent molecular composition of the axon initial segment. J. Neurosci. 28, 14329–14340. doi: 10.1523/JNEUROSCI.4833-08.2008

PubMed Abstract | Crossref Full Text | Google Scholar

Maas, D. A., Eijsink, V. D., Spoelder, M., van Hulten, J. A., De Weerd, P., Homberg, J. R., et al. (2020). Interneuron hypomyelination is associated with cognitive inflexibility in a rat model of schizophrenia. Nat. Commun. 11:2329. doi: 10.1038/s41467-020-16218-4

PubMed Abstract | Crossref Full Text | Google Scholar

Marissal, T. (2021). An inventory of basic research in temporal lobe epilepsy. Rev. Neurol. 177, 1069–1081. doi: 10.1016/j.neurol.2021.02.390

PubMed Abstract | Crossref Full Text | Google Scholar

Marissal, T., Salazar, R. F., Bertollini, C., Mutel, S., De Roo, M., Rodriguez, I., et al. (2018). Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nat. Neurosci. 21, 1412–1420. doi: 10.1038/s41593-018-0225-y

PubMed Abstract | Crossref Full Text | Google Scholar

Matringhen, C., Vigier, A., Bourtouli, N., Michel, F. J., and Marissal, T. (2025). Minimally-invasive manipulation of spared and hypoactive interneurons reduces CA1 synchronization and nonspatial behavior alterations in epilepsy models. Neurobiol. Dis. 217:107155. doi: 10.1016/j.nbd.2025.107155

PubMed Abstract | Crossref Full Text | Google Scholar

McBain, C. J., DiChiara, T. J., and Kauer, J. A. (1994). Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14, 4433–4445. doi: 10.1523/JNEUROSCI.14-07-04433.1994

PubMed Abstract | Crossref Full Text | Google Scholar

Meechan, D. W., Tucker, E. S., Maynard, T. M., and LaMantia, A.-S. (2012). Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome. PNAS 109, 18601–18606. doi: 10.1073/pnas.1211507109

PubMed Abstract | Crossref Full Text | Google Scholar

Micheva, K. D., Kiraly, M., Perez, M. M., and Madison, D. V. (2021). Extensive structural remodeling of the axonal arbors of parvalbumin basket cells during development in mouse neocortex. J. Neurosci. 41, 9326–9339. doi: 10.1523/JNEUROSCI.0871-21.2021

PubMed Abstract | Crossref Full Text | Google Scholar

Mukherjee, A., Carvalho, F., Eliez, S., and Caroni, P. (2019). Long-Lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell 178, 1387–1402.e14. doi: 10.1016/j.cell.2019.07.023.

PubMed Abstract | Crossref Full Text | Google Scholar

Nguyen, R., Morrissey, M. D., Mahadevan, V., Cajanding, J. D., Woodin, M. A., Yeomans, J. S., et al. (2014). Parvalbumin and GAD65 interneuron inhibition in the ventral hippocampus induces distinct behavioral deficits relevant to schizophrenia. J. Neurosci. 34, 14948–14960. doi: 10.1523/JNEUROSCI.2204-14.2014

PubMed Abstract | Crossref Full Text | Google Scholar

Ogiwara, I., Miyamoto, H., Morita, N., Atapour, N., Mazaki, E., Inoue, I., et al. (2007). Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: A circuit basis for epileptic seizures in mice carrying an scn1a gene mutation. J. Neurosci. 27, 5903–5914. doi: 10.1523/JNEUROSCI.5270-06.2007

PubMed Abstract | Crossref Full Text | Google Scholar

Ognjanovski, N., Schaeffer, S., Wu, J., Mofakham, S., Maruyama, D., Zochowski, M., et al. (2017). Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation. Nat. Commun. 8:15039. doi: 10.1038/ncomms15039

PubMed Abstract | Crossref Full Text | Google Scholar

Onorato, I., Tzanou, A., Schneider, M., Uran, C., Broggini, A. C., and Vinck, M. (2025). Distinct roles of PV and Sst interneurons in visually induced gamma oscillations. Cell Rep. 44:115385. doi: 10.1016/j.celrep.2025.115385

PubMed Abstract | Crossref Full Text | Google Scholar

Packer, A. M., and Yuste, R. (2011). Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: A canonical microcircuit for inhibition? J. Neurosci. 31, 13260–13271. doi: 10.1523/JNEUROSCI.3131-11.2011

PubMed Abstract | Crossref Full Text | Google Scholar

Pang, Z. P., Melicoff, E., Padgett, D., Liu, Y., Teich, A. F., Dickey, B. F., et al. (2006). Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J. Neurosci. 26, 13493–13504. doi: 10.1523/JNEUROSCI.3519-06.2006

PubMed Abstract | Crossref Full Text | Google Scholar

Parker, M. M., Rubin, J. E., and Huang, C. (2025). State modulation in spatial networks with three interneuron subtypes. Sci. Adv. 11:eads9134. doi: 10.1126/sciadv.ads9134

PubMed Abstract | Crossref Full Text | Google Scholar

Patz, S., Grabert, J., Gorba, T., Wirth, M. J., and Wahle, P. (2004). Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an early period of postnatal development. Cereb. Cortex 14, 342–351. doi: 10.1093/cercor/bhg132

PubMed Abstract | Crossref Full Text | Google Scholar

Paul, A., Crow, M., Raudales, R., He, M., Gillis, J., and Huang, Z. J. (2017). Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell 171, 522–539.e20. doi: 10.1016/j.cell.2017.08.032.

PubMed Abstract | Crossref Full Text | Google Scholar

Pawelzik, H., Hughes, D. I., and Thomson, A. M. (2002). Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–367. doi: 10.1002/cne.10118

PubMed Abstract | Crossref Full Text | Google Scholar

Pedroncini, O., Federman, N., and Marin-Burgin, A. (2024). Lateral entorhinal cortex afferents reconfigure the activity in piriform cortex circuits. Proc. Natl. Acad. Sci. U. S. A. 121:e2414038121. doi: 10.1073/pnas.2414038121

PubMed Abstract | Crossref Full Text | Google Scholar

Pelkey, K. A., Chittajallu, R., Craig, M. T., Tricoire, L., Wester, J. C., and McBain, C. J. (2017). Hippocampal GABAergic inhibitory interneurons. Physiol. Rev. 97, 1619–1747. doi: 10.1152/physrev.00007.2017

PubMed Abstract | Crossref Full Text | Google Scholar

Peng, Y., Barreda Tomas, F. J., Pfeiffer, P., Drangmeister, M., Schreiber, S., Vida, I., et al. (2021). Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning. Sci. Adv. 7:eabg4693. doi: 10.1126/sciadv.abg4693

PubMed Abstract | Crossref Full Text | Google Scholar

Pignataro, A., Krashia, P., De Introna, M., Nobili, A., Sabetta, A., Stabile, F., et al. (2023). Chemogenetic rectification of the inhibitory tone onto hippocampal neurons reverts autistic-like traits and normalizes local expression of estrogen receptors in the Ambra1+/- mouse model of female autism. Transl. Psychiatry 13:63. doi: 10.1038/s41398-023-02357-x

PubMed Abstract | Crossref Full Text | Google Scholar

Proddutur, A., Nguyen, S., Yeh, C.-W., Gupta, A., and Santhakumar, V. (2023). Reclusive chandeliers: Functional isolation of dentate axo-axonic cells after experimental status epilepticus. Prog. Neurobiol. 231:102542. doi: 10.1016/j.pneurobio.2023.102542

PubMed Abstract | Crossref Full Text | Google Scholar

Qi, C., Sima, W., Mao, H., Hu, E., Ge, J., Deng, M., et al. (2025). Anterior cingulate cortex parvalbumin and somatostatin interneurons shape social behavior in male mice. Nat. Commun. 16:4156. doi: 10.1038/s41467-025-59473-z

PubMed Abstract | Crossref Full Text | Google Scholar

Raudales, R., Kim, G., Kelly, S. M., Hatfield, J., Guan, W., Zhao, S., et al. (2024). Specific and comprehensive genetic targeting reveals brain-wide distribution and synaptic input patterns of GABAergic axo-axonic interneurons. eLife 13:R93481. doi: 10.7554/eLife.93481

PubMed Abstract | Crossref Full Text | Google Scholar

Raven, F., and Aton, S. J. (2021). The engram’s dark horse: How interneurons regulate state-dependent memory processing and plasticity. Front. Neural Circuits 15:750541. doi: 10.3389/fncir.2021.750541

PubMed Abstract | Crossref Full Text | Google Scholar

Rossignol, E., Kruglikov, I., van den Maagdenberg, A. M. J. M., Rudy, B., and Fishell, G. (2013). CaV2.1 ablation in cortical interneurons selectively impairs fast-spiking basket cells and causes generalized seizures. Ann. Neurol. 74, 209–222. doi: 10.1002/ana.23913

PubMed Abstract | Crossref Full Text | Google Scholar

Roth, B. L. (2016). DREADDs for neuroscientists. Neuron 89, 683–694. doi: 10.1016/j.neuron.2016.01.040

PubMed Abstract | Crossref Full Text | Google Scholar

Royer, S., Zemelman, B. V., Losonczy, A., Kim, J., Chance, F., Magee, J. C., et al. (2012). Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775. doi: 10.1038/nn.3077

PubMed Abstract | Crossref Full Text | Google Scholar

Ruden, J. B., Dugan, L. L., and Konradi, C. (2021). Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology 46, 279–287. doi: 10.1038/s41386-020-0778-9

PubMed Abstract | Crossref Full Text | Google Scholar

Rudy, B., Fishell, G., Lee, S., and Hjerling-Leffler, J. (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71:45. doi: 10.1002/dneu.20853

PubMed Abstract | Crossref Full Text | Google Scholar

Rupert, D. D., and Shea, S. D. (2022). Parvalbumin-Positive interneurons regulate cortical sensory plasticity in adulthood and development through shared mechanisms. Front. Neural Circuits 16:886629. doi: 10.3389/fncir.2022.886629

PubMed Abstract | Crossref Full Text | Google Scholar

Sauer, J.-F., Strüber, M., and Bartos, M. (2015). Impaired fast-spiking interneuron function in a genetic mouse model of depression. eLife 4:e04979. doi: 10.7554/eLife.04979

PubMed Abstract | Crossref Full Text | Google Scholar

Shuman, T., Aharoni, D., Cai, D. J., Lee, C. R., Chavlis, S., Page-Harley, L., et al. (2020). Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nat. Neurosci. 23, 229–238. doi: 10.1038/s41593-019-0559-0

PubMed Abstract | Crossref Full Text | Google Scholar

Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702. doi: 10.1038/nature07991

PubMed Abstract | Crossref Full Text | Google Scholar

Sommeijer, J.-P., and Levelt, C. N. (2012). Synaptotagmin-2 is a reliable marker for parvalbumin positive inhibitory boutons in the mouse visual cortex. PLoS One 7:e35323. doi: 10.1371/journal.pone.0035323

PubMed Abstract | Crossref Full Text | Google Scholar

Somogyi, P. (1977). A specific ‘axo-axonal’ interneuron in the visual cortex of the rat. Brain Res. 136, 345–350. doi: 10.1016/0006-8993(77)90808-3

PubMed Abstract | Crossref Full Text | Google Scholar

Stedehouder, J., Couey, J. J., Brizee, D., Hosseini, B., Slotman, J. A., Dirven, C. M. F., et al. (2017). Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans. Cereb. Cortex 27, 5001–5013. doi: 10.1093/cercor/bhx203

PubMed Abstract | Crossref Full Text | Google Scholar

Stokes, C. C. A., and Isaacson, J. S. (2010). From dendrite to soma: Dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 67, 452–465. doi: 10.1016/j.neuron.2010.06.029

PubMed Abstract | Crossref Full Text | Google Scholar

Tai, C., Abe, Y., Westenbroek, R. E., Scheuer, T., and Catterall, W. A. (2014). Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc. Natl. Acad. Sci. U. S. A. 111, E3139–E3148. doi: 10.1073/pnas.1411131111

PubMed Abstract | Crossref Full Text | Google Scholar

Taniguchi, H., He, M., Wu, P., Kim, S., Paik, R., Sugino, K., et al. (2011). A resource of cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013. doi: 10.1016/j.neuron.2011.07.026

PubMed Abstract | Crossref Full Text | Google Scholar

Tiwari, P., Davoudian, P. A., Kapri, D., Vuruputuri, R. M., Karaba, L. A., Sharma, M., et al. (2024). Ventral hippocampal parvalbumin interneurons gate the acute anxiolytic action of the serotonergic psychedelic DOI. Neuron 112, 3697–3714.e6. doi: 10.1016/j.neuron.2024.08.016.

PubMed Abstract | Crossref Full Text | Google Scholar

Tomasella, E., Bechelli, L., Ogando, M. B., Mininni, C., Di Guilmi, M. N., De Fino, F., et al. (2018). Deletion of dopamine D2 receptors from parvalbumin interneurons in mouse causes schizophrenia-like phenotypes. Proc. Natl. Acad. Sci. U. S. A. 115, 3476–3481. doi: 10.1073/pnas.1719897115

PubMed Abstract | Crossref Full Text | Google Scholar

Tremblay, R., Lee, S., and Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron 91:260. doi: 10.1016/j.neuron.2016.06.033

PubMed Abstract | Crossref Full Text | Google Scholar

Tricoire, L., Pelkey, K. A., Erkkila, B. E., Jeffries, B. W., Yuan, X., and McBain, C. J. (2011). A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J. Neurosci. 31, 10948–10970. doi: 10.1523/JNEUROSCI.0323-11.2011

PubMed Abstract | Crossref Full Text | Google Scholar

Tsien, J. Z., Chen, D. F., Gerber, D., Tom, C., Mercer, E. H., Anderson, D. J., et al. (1996). Subregion- and cell type–restricted gene knockout in mouse brain. Cell 87, 1317–1326. doi: 10.1016/S0092-8674(00)81826-7

PubMed Abstract | Crossref Full Text | Google Scholar

Tukker, J. J., Lasztóczi, B., Katona, L., Roberts, J. D. B., Pissadaki, E. K., Dalezios, Y., et al. (2013). Distinct dendritic arborization and in vivo firing patterns of parvalbumin-expressing basket cells in the hippocampal area CA3. J. Neurosci. 33, 6809–6825. doi: 10.1523/JNEUROSCI.5052-12.2013

PubMed Abstract | Crossref Full Text | Google Scholar

Tzilivaki, A., Tukker, J. J., Maier, N., Poirazi, P., Sammons, R. P., and Schmitz, D. (2023). Hippocampal GABAergic interneurons and memory. Neuron 111, 3154–3175. doi: 10.1016/j.neuron.2023.06.016

PubMed Abstract | Crossref Full Text | Google Scholar

Udakis, M., Pedrosa, V., Chamberlain, S. E. L., Clopath, C., and Mellor, J. R. (2020). Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal neurons shapes hippocampal output. Nat. Commun. 11:4395. doi: 10.1038/s41467-020-18074-8

PubMed Abstract | Crossref Full Text | Google Scholar

Uhlhaas, P. J., and Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113. doi: 10.1038/nrn2774

PubMed Abstract | Crossref Full Text | Google Scholar

Upadhya, D., Hattiangady, B., Castro, O. W., Shuai, B., Kodali, M., Attaluri, S., et al. (2019). Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. PNAS 116, 287–296. doi: 10.1073/pnas.1814185115

PubMed Abstract | Crossref Full Text | Google Scholar

Varga, C., Golshani, P., and Soltesz, I. (2012). Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc. Natl. Acad. Sci. U. S. A. 109, E2726–E2734. doi: 10.1073/pnas.1210929109

PubMed Abstract | Crossref Full Text | Google Scholar

Varga, C., Oijala, M., Lish, J., Szabo, G. G., Bezaire, M., Marchionni, I., et al. (2014). Functional fission of parvalbumin interneuron classes during fast network events. eLife 3:e04006. doi: 10.7554/eLife.04006

PubMed Abstract | Crossref Full Text | Google Scholar

Viney, T. J., Lasztoczi, B., Katona, L., Crump, M. G., Tukker, J. J., Klausberger, T., et al. (2013). Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Nat. Neurosci. 16, 1802–1811. doi: 10.1038/nn.3550

PubMed Abstract | Crossref Full Text | Google Scholar

Volitaki, E., Forro, T., Li, K., Nevian, T., and Ciocchi, S. (2024). Activity of ventral hippocampal parvalbumin interneurons during anxiety. Cell Rep. 43:114295. doi: 10.1016/j.celrep.2024.114295

PubMed Abstract | Crossref Full Text | Google Scholar

Wang, B., Ke, W., Guang, J., Chen, G., Yin, L., Deng, S., et al. (2016). Firing frequency maxima of fast-spiking neurons in human, monkey, and mouse neocortex. Front. Cell. Neurosci. 10:239. doi: 10.3389/fncel.2016.00239

PubMed Abstract | Crossref Full Text | Google Scholar

Wang, X.-J., Tegnér, J., Constantinidis, C., and Goldman-Rakic, P. S. (2004). Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc. Natl. Acad. Sci. U. S. A. 101:1368. doi: 10.1073/pnas.0305337101

PubMed Abstract | Crossref Full Text | Google Scholar

Wang, Y., Zhang, P., and Wyskiel, D. R. (2016). Chandelier cells in functional and dysfunctional neural circuits. Front. Neural Circuits 10:33. doi: 10.3389/fncir.2016.00033

PubMed Abstract | Crossref Full Text | Google Scholar

Wick, Z. C., Leintz, C. H., Xamonthiene, C., Huang, B. H., and Krook-Magnuson, E. (2017). Axonal sprouting in commissurally projecting parvalbumin-expressing interneurons. J. Neurosci. Res. 95:2336. doi: 10.1002/jnr.24011

PubMed Abstract | Crossref Full Text | Google Scholar

Wöhr, M., Orduz, D., Gregory, P., Moreno, H., Khan, U., Vörckel, K. J., et al. (2015). Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Trans. Psychiatry 5:e525. doi: 10.1038/tp.2015.19

PubMed Abstract | Crossref Full Text | Google Scholar

Xia, F., Richards, B. A., Tran, M. M., Josselyn, S. A., Takehara-Nishiuchi, K., and Frankland, P. W. (2017). Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. eLife 6:e27868. doi: 10.7554/eLife.27868

PubMed Abstract | Crossref Full Text | Google Scholar

Yamada, J., Ohgomori, T., and Jinno, S. (2015). Perineuronal nets affect parvalbumin expression in GABAergic neurons of the mouse hippocampus. Eur. J. Neurosci. 41, 368–378. doi: 10.1111/ejn.12792

PubMed Abstract | Crossref Full Text | Google Scholar

Yang, J.-W., Prouvot, P.-H., Reyes-Puerta, V., Stüttgen, M. C., Stroh, A., and Luhmann, H. J. (2017). Optogenetic modulation of a minor fraction of parvalbumin-positive interneurons specifically affects spatiotemporal dynamics of spontaneous and sensory-evoked activity in mouse somatosensory cortex in vivo. Cereb. Cortex 27:5784. doi: 10.1093/cercor/bhx261

PubMed Abstract | Crossref Full Text | Google Scholar

Yen, T.-Y., Huang, X., MacLaren, D. A. A., Schlesiger, M. I., Monyer, H., and Lien, C.-C. (2022). Inhibitory projections connecting the dentate gyri in the two hemispheres support spatial and contextual memory. Cell Rep. 39:110831. doi: 10.1016/j.celrep.2022.110831

PubMed Abstract | Crossref Full Text | Google Scholar

Zaitsev, A. V., Povysheva, N. V., Lewis, D. A., and Krimer, L. S. (2007). P/Q-Type, but not N-Type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex. J. Neurophysiol. 97, 3567–3573. doi: 10.1152/jn.01293.2006

PubMed Abstract | Crossref Full Text | Google Scholar

Zhang, N., Hu, B.-W., Li, X.-M., and Huang, H. (2025). Rethinking parvalbumin: From passive marker to active modulator of hippocampal circuits. IBRO Neurosci. Rep. 19, 760–773. doi: 10.1016/j.ibneur.2025.10.005

PubMed Abstract | Crossref Full Text | Google Scholar

Znamenskiy, P., Kim, M.-H., Muir, D. R., Iacaruso, M. F., Hofer, S. B., and Mrsic-Flogel, T. D. (2024). Functional specificity of recurrent inhibition in visual cortex. Neuron 112, 991–1000.e8. doi: 10.1016/j.neuron.2023.12.013

PubMed Abstract | Crossref Full Text | Google Scholar

Keywords: behavior, circuits, cortex, disease, health, hippocampus, memory, parvalbumin interneurons

Citation: Wirk E, Quairiaux C and Marissal T (2025) Parvalbumin interneurons: the dark and bright sides of a key playmaker of neural circuits and behavior. Front. Cell. Neurosci. 19:1738489. doi: 10.3389/fncel.2025.1738489

Received: 03 November 2025; Revised: 03 December 2025; Accepted: 04 December 2025;
Published: 19 December 2025.

Edited by:

Fernando Castillo Díaz, University of Regensburg, Germany

Reviewed by:

Noel Federman, Instituto Tecnológico de Buenos Aires, Argentina
Michael Hadler, Charité - University Medicine Berlin, Germany

Copyright © 2025 Wirk, Quairiaux and Marissal. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Thomas Marissal, dGhvbWFzLm1hcmlzc2FsQGluc2VybS5mcg==

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.