ORIGINAL RESEARCH article
Front. Comput. Neurosci.
Volume 19 - 2025 | doi: 10.3389/fncom.2025.1589247
CNN-BiLSTM and DC-IGN fusion model and piecewise exponential attenuation optimization: An innovative approach to improve EEG emotion recognition performance
Provisionally accepted- Tibet University, Lhasa, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
EEG emotion recognition has important applications in human-computer interaction and mental health assessment, but existing models have limitations in capturing the complex spatial and temporal features of EEG signals. To overcome this problem, we propose an innovative model that combines CNN-BiLSTM and DC-IGN and fused both outputs for sentiment classification via a fully connected layer. In addition, we use a piecewise exponential decay strategy to optimize the training process. We conducted a comprehensive comparative experiment on the SEED and DEAP datasets, it includes traditional models, existing advanced models, and different combination models (such as CNN+LSTM, CNN+LSTM+DC-IGN). The results show that our model achieves 94.35% accuracy on SEED dataset, 89.84% on DEAP-valence, 90.31% on DEAP-arousal, which is significantly better than other models. In addition, we further verified the superiority of the model through subject independent experiment and learning rate scheduling strategy comparison experiment. These results not only improve the performance of EEG emotion recognition, but also provide new ideas and methods for research in related fields, and prove the significant advantages of our model in capturing complex features and improving classification accuracy.
Keywords: EEG emotion recognition, DC-IGN, piecewise exponential decay strategy, CNN, BiLSTM
Received: 07 Mar 2025; Accepted: 22 May 2025.
Copyright: © 2025 Zhang, Feng, Chen, Huang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Yan Feng, Tibet University, Lhasa, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.