METHODS article
Front. Comput. Neurosci.
This article is part of the Research TopicExploring the Role of Criticality in Neural SystemsView all articles
Arbor-TVB: A Novel Multi-Scale Co-Simulation Framework with a Case Study on Neural-Level Seizure Generation and Whole-Brain Propagation
Provisionally accepted- 1Julich Research Center, Helmholtz Association of German Research Centres (HZ), Jülich, Germany
- 2CY Cergy Paris Universite, Cergy-Pontoise, France
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Computational neuroscience has traditionally focused on isolated scales, limiting understanding of brain function across multiple levels. While microscopic models capture biophysical details of neurons, macroscopic models describe large-scale network dynamics. Integrating these scales, however, remains a significant challenge. In this study, we present a novel co-simulation framework that bridges these levels by integrating the neural simulator Arbor with The Virtual Brain (TVB) platform. Arbor enables detailed simulations from single-compartment neurons to populations of such cells, while TVB models whole-brain dynamics based on anatomical features and the mean neural activity of a brain region. By linking these simulators for the first time, we provide an example of how to model and investigate the onset of seizures in specific areas and their propagation to the whole brain. This framework employs an MPI intercommunicator for real-time bidirectional interaction, translating between discrete spikes from Arbor and continuous TVB activity. Its fully modular design enables independent model selection for each scale, requiring minimal effort to translate activity across simulators. The novel Arbor-TVB co-simulator allows replacement of TVB nodes with biologically realistic neuron populations, offering insights into seizure propagation and potential intervention strategies. The integration of Arbor and TVB marks a significant advancement in multi-scale modeling, providing a comprehensive computational framework for studying neural disorders and optimizing treatments.
Keywords: Arbor, Mouse Brain Connectome, Multi-scale Neural Models, Seizures, the virtual brain
Received: 23 Oct 2025; Accepted: 17 Dec 2025.
Copyright: © 2025 Hater, Courson, Lu, Diaz Pier and Manos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Thorsten Hater
Thanos Manos
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.