ORIGINAL RESEARCH article
Front. Mar. Sci.
Sec. Ocean Observation
Volume 12 - 2025 | doi: 10.3389/fmars.2025.1631686
Multifrequency Backscatter Classification of Seabed Sediments Using MBES: An Integrated Approach with Ground-Truth Validation
Provisionally accepted- 1Marine Research Corporation, Busan, Republic of Korea
- 2Korea Institute of Ocean Science and Technology (KIOST), Busan, Republic of Korea
- 3Korea Hydrographic and Oceanographic Agency, Busan, Republic of Korea
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Accurate seabed sediment classification is essential for mapping marine geological features, assessing benthic habitat, and planning coastal infrastructure. This study investigated the utility of multifrequency multibeam echosounder (MBES) backscatter data for improving seabed sediment classification compared to traditional single-frequency approaches. MBES data were acquired at three frequencies (170, 300, and 450 kHz), and post-processed to produce frequency-specific backscatter mosaics and a composite red-green-blue image. Classification was performed using unsupervised clustering methods, including K-means and isodata clustering, with input vectors composed of normalized backscatter intensities from the three frequencies. The integrated multifrequency approach successfully identified three distinct sediment classes, which were validated using grab samples analyzed for grain size, water content, total organic carbon, and slope. These classes exhibited strong correspondence with underlying geomorphological features and local hydrodynamic regimes, confirming the influence of topography and tidal currents on sediment distribution. Lower-frequency data (170 kHz) were more sensitive to subsurface variability, while higher-frequency data (450 kHz) captured surface texture differences more effectively. The combined use of all three frequencies improved classification performance, particularly in transitional sediment zones where single-frequency methods proved ambiguous. The methodology proved robust across varying water depths, sediment types, and complex seabed terrains, aligning with recent advances in MBES-based sediment mapping and supporting its general applicability for other dynamic coastal systems. These results demonstrate that the use of multifrequency MBES backscatter data enhances the resolution and reliability of sediment classification results, providing a robust framework for high-resolution seabed mapping in dynamic coastal environments.
Keywords: Multibeam echosounder, backscatter classification, Multifrequency acoustics, seabed sediments, K-Means clustering
Received: 20 May 2025; Accepted: 21 Jul 2025.
Copyright: © 2025 Lim, Kang, Hwang, Jung, Kum and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jeongwon Kang, Korea Institute of Ocean Science and Technology (KIOST), Busan, Republic of Korea
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.