REVIEW article
Front. Med.
Sec. Nephrology
Volume 12 - 2025 | doi: 10.3389/fmed.2025.1646412
Advancements in the Non-invasive Diagnosis of Renal Fibrosis
Provisionally accepted- The Affiliated Hospital of Southwest Medical University, Luzhou, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Renal fibrosis is the central pathological pathway by which various primary and secondary kidney diseases progress to end-stage renal disease. It is characterized by excessive extracellular matrix deposition and destruction of the native renal parenchyma, ultimately leading to irreversible loss of nephrons. Currently, percutaneous renal biopsy with histopathological evaluation remains the diagnostic gold standard for renal fibrosis, allowing semiquantitative scoring of renal interstitial fibrosis and glomerulosclerosis (e.g., Banff grading). However, this invasive procedure carries a risk of bleeding and is limited by sampling error and inter-observer variability, making it impractical for dynamic disease monitoring. In recent years, significant advances have been made in noninvasive diagnostic techniques. These include: (1) blood and urine biomarkers such as markers of ECM metabolism, inflammatory factors, tubular injury markers, and extracellular vesicles; (2) imaging modalities including novel ultrasound techniques, shear wave elastography, functional magnetic resonance imaging (MRI) methods such as diffusion-weighted imaging, blood oxygen level–dependent MRI, magnetic resonance elastography, and positron emission tomography/computed tomography using radiotracers targeting fibrosis-associated molecules such as 68Ga-FAPI. This review systematically summarizes the latest evidence on the above biomarkers and advanced imaging modalities, with an emphasis on their diagnostic performance (sensitivity/specificity), utility for dynamic monitoring, and bottlenecks in clinical translation. The aim is to develop a multimodal, noninvasive assessment system to enable earlier fibrosis detection, stratified disease management, and precise intervention targeting fibrogenic pathways, ultimately improving renal disease outcomes.
Keywords: Chronic Kidney Disease, renal fibrosis, Non-invasive diagnosis, biomarkers, imaging techniques
Received: 13 Jun 2025; Accepted: 14 Jul 2025.
Copyright: © 2025 袁, Wang, Kang, Wu and Ou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Santao Ou, The Affiliated Hospital of Southwest Medical University, Luzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.