ORIGINAL RESEARCH article

Front. Med.

Sec. Ophthalmology

Evaluation of Classification Performance for Six Types of Fundus Diseases in OCT Images Based on Multi-source Training Strategy

  • 1. Netchina Huaxin Technology Co., Ltd, Taiyuan, Shanxi, China

  • 2. Netchina Huaxin Technology Co., Taiyuan, Shanxi, China

  • 3. Shanxi Medical University, Taiyuan, China

  • 4. Shanxi Eye Hospital, Taiyuan, China

  • 5. The 985th Hospital of the Joint Logistics Support Force of the Chinese People ' s Liberation Army., Taiyuan, Shanxi, China

Article metrics

View details

5

Views

The final, formatted version of the article will be published soon.

Abstract

Objective:Currently, publicly available Optical Coherence Tomography datasets are commonly plagued by limited coverage of disease categories, scarce samples and severe class imbalance, which leads to insufficient generalization ability of deep learning models in real-world clinical settings. This study aims to construct a high-quality OCT dataset encompassing six key types of fundus lesions and normal controls, and to systematically evaluate the improvement effect of training strategies for multi-source data fusion on the performance of multi-class classification. Methods:We integrated local clinical data from Shanxi Eye Hospital with the latest public dataset OCTDL to establish a combined dataset. This dataset consists of 6,165 images, covering seven categories: age-related macular degeneration, diabetic macular edema, retinal artery occlusion , retinal vein occlusion, epiretinal membrane, vitreomacular interface disease, and normal controls . On this basis, six representative deep learning architectures were selected, and two training paradigms were compared under unified experimental settings: (1) Training exclusively on open-source OCTDL data (S1); (2) Joint training using both local data and OCTDL data (S2). All models were evaluated on the identical OCTDL test set. A comprehensive analysis was conducted using multi-dimensional metrics including accuracy, weighted F1-score, class-specific recall, and area under the curve (AUC), with a particular focus on the misdiagnosis rate. Results:The S1 strategy exhibited significantly limited model recognition capability due to the extremely small sample sizes of certain categories. In contrast, the S2 strategy markedly improved the overall performance of the models. Confusion matrix analysis demonstrated that ViT-Base achieved the optimal performance under the S2 strategy: the accuracy reached 93.61%, the This is a provisional file, not the final typeset article misdiagnosis rate of RAO was reduced to 0%, the misdiagnosis rate of AMD was controlled at 1.34%, and the misdiagnosis rate of RVO decreased from 14.89% to 8.51%. Conclusion:Multi-source data fusion serves as an effective approach to enhance the robustness of OCT multi-category classification models, and it can notably strengthen the recognition capability for certain diseases in particular. This study not only verifies the universal benefits of this strategy but also reveals the critical impact of model selection on the transfer learning effect.

Summary

Keywords

DATA FUSION, deep learning, Multi-category classification, OCT, Retinal Diseases

Received

26 December 2025

Accepted

20 February 2026

Copyright

© 2026 Guo, Wang, Zhao, Liu, Hou, Liang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Lijuan Zhang

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Share article

Article metrics