REVIEW article
Front. Mol. Biosci.
Sec. Metabolomics
Volume 12 - 2025 | doi: 10.3389/fmolb.2025.1628725
Tools to study microbial iron homeostasis and oxidative stress: current techniques and methodological gaps
Provisionally accepted- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Iron is a vital nutrient for both microbial pathogens and their eukaryotic hosts, playing essential roles in stress adaptation, symbiotic interactions, virulence expression, and chronic inflammatory diseases. This review discusses current laboratory methods for iron detection and quantification in microbial cultures, host-pathogen models, and environmental samples. Microbial pathogens have evolved sophisticated specialized transport systems, iron acquisition strategies to overcome its limitation, including siderophore production, uptake of heme and host iron-binding. These iron-scavenging systems are closely linked to the regulation of virulence traits such as adhesion, motility, toxin secretion, and biofilm formation. In ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli), iron limitation enhances biofilm development, which protects bacteria from antibiotics and immune responses and promotes persistent infections. Even worse, pathogens can also manipulate host iron metabolism, exacerbating inflammation and disease progression. Although iron is indispensable for microbial growth, excessive intracellular iron promotes reactive oxygen species (ROS) generation, causing oxidative damage and ferroptosis-like cell death. Understanding the dual role of iron as both a nutrient and a toxic agent highlights its importance in infection dynamics. We provide a critical overview of existing analytical techniques and emphasize the need for careful selection of methods to improve our understanding of microbial iron metabolism, host-pathogen interactions, and to support the development of new therapeutic and environmental monitoring strategies.
Keywords: Iron, Ferrous iron, Virulence, pathogen, Biofilm, CAS, Ferrozine, ferroptosis
Received: 14 May 2025; Accepted: 22 Jul 2025.
Copyright: © 2025 Strzelecki and Nowicki. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Dariusz Nowicki, Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.