Your new experience awaits. Try the new design now and help us make it even better

ORIGINAL RESEARCH article

Front. Mol. Biosci.

Sec. Molecular Biophysics

This article is part of the Research TopicMeasuring Protein Kinetics in Living CellsView all articles

In-cell single-molecule FRET measurement of cytosolic RAF proteins to investigate the structural states and kinetics among them

Provisionally accepted
  • RIKEN, Saitama, Japan

The final, formatted version of the article will be published soon.

The structure of a protein is closely linked to its function. Many proteins undergo conformational changes while working in living cells. Consequently, proteins in various structural states coexist in the native cellular environment. Understanding the structural heterogeneity of proteins in living cells is essential for understanding the kinetics of protein reactions. Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for probing the structure of biomolecules at the single-molecule level. Confocal smFRET measurements, which obtain the smFRET distribution of freely diffusing single molecules, have been successfully applied to cytosolic proteins in living cells. Previous studies on CRAF, a member of the RAF kinase family, revealed the coexistence of at least three conformational states and critical interactions with 14-3-3 proteins. In this study, we applied the method to, in addition to wild-type (WT) CRAF, to mutants at important sites, and to co-expression with other proteins related to RAF activation. The detailed analyses comparing those results suggest the presence of a fourth minor conformational state of CRAF in addition to the previously identified three major states. This fourth state may be related to RAF dimers. Supported by a newly introduced burst intensity analysis, we also found that the three major components can be classified into two groups: two interconvertible components and one independent component. Furthermore, in-cell smFRET measurement of wild-type BRAF, another RAF family member, revealed that its structural distribution consists primarily of a single species, which seemingly corresponds to the lowest FRET component among the three structural states of WT-CRAF. This finding suggests that BRAF has a fundamentally different structural and regulatory mechanism than CRAF.

Keywords: Single-molecule FRET, alex, Raf, Protein Conformation, live-cell measurement

Received: 03 Oct 2025; Accepted: 17 Nov 2025.

Copyright: © 2025 Okamoto and Sako. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence:
Kenji Okamoto, okamotok@riken.jp
Yasushi Sako, sako@riken.jp

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.