Abstract
Olfactory loss accompanies at least 139 neurological, somatic, and congenital/hereditary conditions. This observation leads to the question of whether these associations are correlations or whether they are ever causal. Temporal precedence and prospective predictive power suggest that olfactory loss is causally implicated in many medical conditions. The causal relationship between olfaction with memory dysfunction deserves particular attention because this sensory system has the only direct projection to memory centers. Mechanisms that may underlie the connections between medical conditions and olfactory loss include inflammation as well as neuroanatomical and environmental factors, and all 139 of the medical conditions listed here are also associated with inflammation. Olfactory enrichment shows efficacy for both prevention and treatment, potentially mediated by decreasing inflammation.
1 Introduction
1.1 Observations linking olfactory loss and medical conditions: correlation, precedence, and prediction
1.1.1 Olfactory loss is associated with many medical conditions
First, a strikingly large number of medical conditions are accompanied by olfactory dysfunction (Tables 1–3). The remarkably long and diverse list of medical conditions that co-occur with olfactory loss raises the possibility that there is something deeper to these relationships.
Table 1
| Medical condition | Olfactory dysfunction | Olfactory study size (N) | Inflammation |
|---|---|---|---|
| Agnosia (olfactory) | Kopala and Clark, 1990 | 77 | Wang et al., 2010 |
| Alcoholism | Rupp et al., 2004 | 60 | Leclercq et al., 2017 |
| Alzheimer's disease | Waldton, 1974 | 100 | Xie et al., 2022 |
| Amyotrophic lateral sclerosis | Viguera et al., 2018 | 147 | McCombe and Henderson, 2011 |
| Anesthesia cognitive impairment | Zhang C. et al., 2022 | 242 | Subramaniyan and Terrando, 2019 |
| Anorexia nervosa | Roessner et al., 2005 | 32 | Dalton et al., 2018 |
| Anxiety | Chen X. et al., 2021 | 107 | Guo B. et al., 2023 |
| Autism | Kinnaird et al., 2020 | 80 | Kern et al., 2016 |
| Cerebral palsy | Nakashima et al., 2019 | 14 | Paton et al., 2022 |
| Cervical dystonia | Marek et al., 2018 | 198 | Scorr et al., 2024 |
| Childhood maltreatment | Croy et al., 2010 | 22 | Wong et al., 2022 |
| Cluster headache | Samanci et al., 2021 | 57 | Hardebo, 1994 |
| Corticobasal syndrome | Luzzi et al., 2007 | 7 | Alster et al., 2021 |
| Creutzfeldt-Jakob disease | Reuber et al., 2001 | 1 | López González et al., 2016 |
| Depression (unipolar) | Eliyan et al., 2021 | 3,546 | Kofod et al., 2022 |
| Depression (bipolar) | Kazour et al., 2020 | 176 | Benedetti et al., 2020 |
| Epilepsy | Khurshid et al., 2019 | 912 | Rana and Musto, 2018 |
| Essential tremor | Elhassanien et al., 2021 | 46 | Muruzheva et al., 2022 |
| Fibromyalgia | Amital et al., 2014 | 45 | Coskun Benlidayi, 2019 |
| Frontotemporal dementia | Luzzi et al., 2007 | 11 | Bright et al., 2019 |
| Glioblastoma | Kebir et al., 2020 | 122 | Zhang H. et al., 2022 |
| Gulf war illness | Chao, 2024 | 80 | Michalovicz et al., 2020 |
| Headache | Gossrau et al., 2023 | 80 | Biscetti et al., 2021 |
| Heavy metal exposure | Renzetti et al., 2024 | 130 | He et al., 2024 |
| Hepatic encephalopathy | Zucco et al., 2006 | 24 | Lu, 2023 |
| Herpetic meningoencephalitis | Landis et al., 2010 | 3 | Li et al., 2023 |
| Huntington's disease | Fernandez-Ruiz et al., 2003 | 162 | Valadão et al., 2020 |
| Idiopathic intracranial hypertension | Bershad et al., 2014 | 38 | Sinclair et al., 2008 |
| Impulsive violent offenders | Challakere Ramaswamy et al., 2023 | 485 | Hasan Balcioglu et al., 2022 |
| Lewy body dementia | Yoo et al., 2018 | 217 | Amin et al., 2022 |
| Loneliness | Desiato et al., 2021 | 221 | Van Bogart et al., 2022 |
| Long COVID-19 | Burges Watson et al., 2021 | 9,000 | Aiyegbusi et al., 2021 |
| ME/chronic fatigue syndrome | Harris et al., 2017 | 11 | Chaves-Filho et al., 2023 |
| Memory loss with aging | Doty et al., 1984 | 1,995 | Sartori et al., 2012 |
| Menopause | Lee et al., 2019 | 3,863 | Malutan et al., 2014 |
| Migraine headaches | Whiting et al., 2015 | 100 | Kursun et al., 2021 |
| Mild cognitive impairment | Peters et al., 2003 | 100 | Leonardo and Fregni, 2023 |
| Motor neuron disease | Hawkes et al., 1998 | 193 | Komine and Yamanaka, 2015 |
| Multiple sclerosis | Atalar et al., 2018 | 55 | Groppa et al., 2021 |
| Multiple-system atrophy | Abele et al., 2003 | 8 | Rydbirk et al., 2022 |
| Myasthenia gravis | Leon-Sarmiento et al., 2012 | 27 | Koneczny and Herbst, 2019 |
| Myotonic dystrophy | Masaoka et al., 2011 | 7 | Azotla-Vilchis et al., 2021 |
| Narcolepsy | Buskova et al., 2010 | 66 | Valizadeh et al., 2024 |
| Neuromyelitis optica | Schmidt et al., 2013 | 20 | Kümpfel et al., 2024 |
| Obsessive compulsive disorder | Berlin et al., 2017 | 30 | Marazziti et al., 2023 |
| Parkinson's disease | Haehner et al., 2009 | 50 | Pajares et al., 2020 |
| Posterior cortical atrophy | Witoonpanich et al., 2013 | 15 | Firth et al., 2019 |
| Postoperative delirium | Brown et al., 2015 | 165 | Pang Y. et al., 2022 |
| Postpartum depression | Peng et al., 2021 | 39 | Bränn et al., 2020 |
| Posttraumatic stress disorder | Vasterling et al., 2000 | 68 | Hori and Kim, 2019 |
| Prenatal alcohol syndrome | Bower et al., 2013 | 16 | Masehi-Lano et al., 2023 |
| Progressive supranuclear palsy | Shill et al., 2021 | 281 | Alster et al., 2020 |
| Psychopathy | Bettison et al., 2013 | 381 | Wang et al., 2017 |
| Psychosis | Kamath et al., 2024 | 195 | Misiak et al., 2021 |
| Pure autonomic failure | Goldstein and Sewell, 2009 | 51 | Brás et al., 2020 |
| Radioactive iodine | Suat et al., 2016 | 63 | Stanciu et al., 2023 |
| REM sleep behavior disorder | Iranzo et al., 2021 | 140 | Kim et al., 2019 |
| Repetitive head impacts | Alosco et al., 2017 | 123 | McKee et al., 2014 |
| Restless leg syndrome | Adler et al., 1998 | 46 | Jiménez-Jiménez et al., 2023 |
| Schizophrenia | Kopala et al., 1993 | 98 | Müller, 2018 |
| Semantic dementia | Luzzi et al., 2007 | 20 | Pascual et al., 2021 |
| Sexual dysfunction | Siegel et al., 2021 | 1,981 | Yafi et al., 2016 |
| Sociopathy | Mahmut and Stevenson, 2012 | 79 | Wang et al., 2017 |
| Sodium channel Nav1.7 mutation | Weiss et al., 2011 | 3 | Cheng et al., 2021 |
| Spinocerebellar ataxia type 7 | Galvez et al., 2014 | 55 | Goswami et al., 2022 |
| Stroke | Wehling et al., 2015 | 78 | Lambertsen et al., 2019 |
| Subarachnoid hemorrhagic surgery | Bor et al., 2009 | 197 | Hokari et al., 2020 |
| Tinnitus | Katayama et al., 2023 | 510 | Kang et al., 2021 |
| Tourette syndrome | Kronenbuerger et al., 2018 | 56 | Alshammery et al., 2022 |
| Traumatic brain injury | Frasnelli et al., 2016 | 63 | Postolache et al., 2020 |
| Vascular dementia | Suh et al., 2020 | 1 | Trares et al., 2022 |
| Zika/Guillain-Barré syndrome | Lazarini et al., 2022 | 38 | Acosta-Ampudia et al., 2018 |
Neurological condition/disorder, the reference for accompanying olfactory dysfunction, study size of olfactory study, and reference for inflammation.
Table 2
| Medical condition | Olfactory dysfunction | Olfactory study size (N) | Inflammation |
|---|---|---|---|
| Adenoid hypertrophy | Konstantinidis et al., 2005 | 65 | Ye et al., 2022 |
| Allergic rhinitis | Apter et al., 1999 | 90 | Klimek and Eggers, 1997 |
| Anemia | Dinc et al., 2016 | 100 | Weiss et al., 2019 |
| Arthritis | Steinbach et al., 2011 | 101 | Gwinnutt et al., 2022 |
| Asthma | Rhyou et al., 2021 | 68 | Gillissen and Paparoupa, 2015 |
| Autoimmune encephalitis | Geran et al., 2019 | 64 | Graus et al., 2016 |
| Behcet disease | Akyol et al., 2016 | 96 | Nair and Moots, 2017 |
| Blepharospasm | Gamain et al., 2021 | 34 | Lu et al., 2014 |
| Cancer (head and neck) | Spotten et al., 2016 | 40 | Bonomi et al., 2014 |
| Candida infection | Fluitman et al., 2021 | 218 | Dahlman et al., 2021 |
| Cardiovascular disease | Roh et al., 2021 | 20,016 | Bafei et al., 2023 |
| Celiac disease | Berkiten et al., 2024 | 74 | Barone et al., 2022 |
| Chagas' disease | Leon-Sarmiento et al., 2014 | 120 | Nunes et al., 2023 |
| COPD | Thorstensen et al., 2022 | 183 | Barnes, 2016 |
| Cirrhosis | Garrett-Laster et al., 1984 | 45 | Dirchwolf and Ruf, 2015 |
| Congestive heart failure | Chamberlin et al., 2024 | 477 | Cesari et al., 2003 |
| Corticobasal syndrome | Luzzi et al., 2007 | 40 | Alster et al., 2021 |
| COVID-19 | Vaira et al., 2020 | 150 | Radke et al., 2024 |
| Crohn's disease | Fischer et al., 2014 | 123 | Petagna et al., 2020 |
| Cushing syndrome | Heger et al., 2021 | 60 | Wurth et al., 2022 |
| Diabetes | Zhang et al., 2019 | 105 | Lontchi-Yimagou et al., 2013 |
| Erectile dysfunction | Deng et al., 2020 | 102 | Kaya-Sezginer and Gur, 2020 |
| Frailty | Van Regemorter et al., 2022 | 155 | Soysal et al., 2016 |
| Glaucoma | Iannucci et al., 2024 | NS | Baudouin et al., 2021 |
| Helicobacter pylori infection | Üstün Bezgin et al., 2017 | 66 | Guo X. et al., 2023 |
| HIV/AIDS | Zucco and Ingegneri, 2004 | 48 | Deeks et al., 2013 |
| Hypertension | Datta et al., 2023 | 60 | Patrick et al., 2021 |
| Hypothyroidism | McConnell et al., 1975 | 18 | Kubiak et al., 2023 |
| Idiopathic inflammatory myopathy | Iaccarino et al., 2014 | 120 | Lundberg et al., 2021 |
| Inflammation | Schubert et al., 2015 | 1,611 | Schubert et al., 2015 |
| Inflammatory bowel disease | Sollai et al., 2021 | 199 | Shi et al., 2006 |
| Ischemic heart failure | Akşit and Çil, 2020 | 80 | Rao et al., 2021 |
| Kidney disease | Frasnelli et al., 2002 | 64 | Rayego-Mateos et al., 2023 |
| Laryngectomy | Veyseller et al., 2012 | 30 | Akizuki et al., 2022 |
| Leptin imbalance | East and Wilson, 2019 | NS | Likuni et al., 2008 |
| Macular degeneration | Kar et al., 2015 | 138 | Tan et al., 2020 |
| Malnutrition | Gunzer, 2017 | NS | Muscaritoli et al., 2023 |
| Obesity | Velluzzi et al., 2022 | 80 | Cox et al., 2015 |
| Obstructive sleep disorder | Kaya et al., 2020 | 26 | Alberti et al., 2003 |
| Paget's disease | Wheeler et al., 1995 | 498 | Numan et al., 2015 |
| Periodontitis | Schertel Cassiano et al., 2023 | 50 | Cecoro et al., 2020 |
| Polycystic ovary syndrome | Koseoglu et al., 2016 | 55 | Dabravolski et al., 2021 |
| Premature menopause | Lee et al., 2019 | 104 | Bertone-Johnson et al., 2019 |
| Psoriasis | Zhong et al., 2023 | 10,918 | Kommoss et al., 2023 |
| Sarcopenia | Harita et al., 2019 | 141 | Dalle et al., 2017 |
| Spondyloarthritis | Yalcinkaya et al., 2019 | 50 | Sieper and Poddubnyy, 2017 |
| Systemic lupus erythematosus | Schoenfeld et al., 2009 | 100 | Frangou et al., 2019 |
| Systemic sclerosis | Amital et al., 2014 | 65 | Volkmann et al., 2023 |
| Testosterone deficiency | Kirgezen et al., 2021 | 70 | Mohamad et al., 2019 |
| Ultra-processed diet | Stevenson et al., 2020 | 222 | Tristan Asensi et al., 2023 |
| Vitamin B12 deficiency | Derin et al., 2016 | 63 | Al-Daghri et al., 2016 |
| Vitamin D deficiency | Bigman, 2020 | 2,216 | Yin and Agrawal, 2014 |
| Wegener's granulomatosis | Laudien et al., 2009 | 76 | Hajj-Ali et al., 2015 |
Somatic condition/disorder, the reference for accompanying olfactory dysfunction, study size of olfactory study, and reference for inflammation.
NS. not specified.
Table 3
| Medical condition | Olfactory dysfunction | Olfactory study size (N) | Inflammation |
|---|---|---|---|
| 22q11 deletion syndrome | Sobin et al., 2006 | 62 | Dou et al., 2020 |
| Angioedema (hereditary) | Perricone et al., 2011 | 60 | Maas and López-Lera, 2019 |
| Bardet-Biedl syndrome | Iannaccone et al., 2005 | 15 | Melluso et al., 2023 |
| Cystic fibrosis | Miller et al., 2023 | 76 | McElvaney et al., 2019 |
| Down syndrome | Cecchini et al., 2016 | 56 | Huggard et al., 2020 |
| Fragile X syndrome | Juncos et al., 2012 | 83 | Van Dijck et al., 2020 |
| Friedreich ataxia | Connelly et al., 2002 | 35 | Apolloni et al., 2022 |
| Gaucher disease | McNeill et al., 2012 | 60 | Francelle and Mazzulli, 2022 |
| Neurofibromatosis type 1 | Speth et al., 2023 | 26 | Liao et al., 2018 |
| Niemann-Pick | Mishra et al., 2016 | 2 | Han et al., 2023 |
| Retinitis pigmentosa | Charbel Issa et al., 2018 | 9 | Zhao et al., 2022 |
| Usher syndrome | Ribeiro et al., 2016 | 130 | Castiglione and Möller, 2022 |
| Wilson's disease | Chen L. et al., 2021 | 50 | Wu et al., 2019 |
| Wolfram syndrome | Alfaro et al., 2020 | 40 | Panfili et al., 2021 |
Congenital/hereditary disorder, the reference for accompanying olfactory dysfunction, study size of olfactory study, and reference for inflammation.
Many of the associations between olfactory loss and medical conditions are supported by a single study. However, there are several conditions that have been studied extensively and there is strong support that has been reviewed for the relationship between these conditions and olfactory dysfunction: COVID-19 (Las Casas Lima et al., 2022), Alzheimer's disease (McLaren and Kawaja, 2024), Parkinson's disease (Bagherieh et al., 2023), depression (Kohli et al., 2016), and rhinitis (Ahmed and Rowan, 2020).
1.1.2 Olfactory dysfunction occurs early in the development of some medical conditions
To show that olfactory loss increases the risk of developing symptoms of medical conditions, one would need to show that olfactory dysfunction arises before the medical condition. The relevant experiments are quite difficult to do because one must evaluate the olfactory ability of many individuals and then follow them for years to determine whether poor olfactory ability precedes the medical condition. Despite the challenge, several such studies have been conducted. Olfactory loss appears well before any other Parkinson's symptoms (Walker et al., 2021), and similarly, an early symptom of Alzheimer's disease is the loss of olfaction (Serby et al., 1991), with the first part of the brain to deteriorate in that disease being the olfactory pathway (Peters et al., 2003). Schizophrenia is associated with olfactory dysfunction and such dysfunction can be seen in youths who eventually develop schizophrenia (Kamath et al., 2012). Olfactory loss also precedes depression (Kamath et al., 2024), major cardiac events (Chamberlin et al., 2024), and multiple sclerosis (Constantinescu et al., 1994); olfactory dysfunction therefore appears to be a prodromal symptom of these conditions.
1.1.3 Olfactory dysfunction prospectively predicts cognitive loss and all-cause mortality
In men, significant correlations are found in measurements of olfactory thresholds and language index score, along with correlations with executive function. On the other hand, women had correlations for olfactory discrimination and olfactory identification with a visuospatial index score (Masala et al., 2024). In young adults, olfactory ability is correlated with cognitive performance as assessed by verbal fluency, word list learning, word list recall, and the Trail Making Tests, even when the outcomes were adjusted for age, sex, education, and depression symptoms (Yahiaoui-Doktor et al., 2019). Challakere Ramaswamy and Schofield (2022) reviewed 54 studies and found a variety of cognitive abilities that correlated with olfactory ability, including: impulsivity, processing speed, inhibitory control, verbal fluency, working memory, mental flexibility, decision-making, visuospatial processing, planning, and executive function.
If olfactory loss has a causal relationship with at least some medical conditions, one might expect that the loss of olfaction would predict the incidence of those conditions. Indeed, one can predict the probability that older adults will later develop mild cognitive impairment (MCI) based on their olfactory ability (Wheeler and Murphy, 2021). Furthermore, of those individuals who have MCI, one can predict which individuals will develop Alzheimer's disease, as well as which individuals will descend rapidly into their dementia, based on their olfactory ability (Wheeler and Murphy, 2021). Parkinson's patients have both a loss of olfactory function and a loss of executive function (Solla et al., 2023). There are now a number of large prospective cohort studies showing that olfactory ability is a strong predictive factor for all-cause mortality up to 17 years later (Wilson et al., 2011; Gopinath et al., 2012; Pinto et al., 2014; Devanand et al., 2015; Ekström et al., 2017; Schubert et al., 2017; Fuller-Thomson and Fuller-Thomson, 2019; Kamath and Leff, 2019; Liu et al., 2019; Choi et al., 2021; Pinto, 2021; Xiao et al., 2021; Pang N. Y. et al., 2022), with higher accuracy than predictions based on heart disease (Pinto et al., 2014).
1.2 Mechanisms linking olfactory loss and medical conditions: inflammation, neuroanatomy, environmental stressors
1.2.1 Mechanism for triggering olfactory system damage
There are several possibilities for the mechanism underlying the many associations between olfaction and disease. One possibility is that there is a common mechanism that affects both the olfactory system and various neurological and somatic targets. Another possibility is that the neurological and somatic conditions produce something that degrades the olfactory system. A third possibility is that the olfactory system produces something that puts the brain and the body at risk either for contracting diseases or for expressing the symptoms of those diseases. One common product of disease is inflammation, and there is a strong relationship between olfactory dysfunction and elevated inflammation. As can be seen in Tables 1–3, at least 139 conditions that are associated with olfactory loss are also associated with increased inflammatory responses. These conditions have been subdivided into three separate categories: neurological, somatic, and congenital/hereditary conditions (Tables 1–3, respectively). Although the conditions could have been further subdivided into many other more specific categories, and some of the conditions may fall under two different categories, for simplicity, each medical condition was included in only one of the three categories.
1.2.2 Inflammation may be causing the olfactory dysfunction
Perhaps the olfactory system is particularly sensitive to inflammation that reaches it either from other parts of the brain or through the peripheral bloodstream. Alternatively, inflammation in the olfactory system may be triggered by agents that enter through the nose, such as air pollution (Ajmani et al., 2017) or unpleasant odors (Anja Juran et al., 2022). In addition, olfactory dysfunction associated with SARS-CoV-2 (COVID-19) infection is thought to be mediated in part via inflammation (Chang et al., 2024). The olfactory system may be uniquely sensitive to damage inflicted by other sources of inflammation (brain or body) that arise from various diseases because it is already sustaining high levels of inflammation from exposure to volatile agents from the air.
Poor ability to sniff contributes to the olfactory dysfunction of Parkinson's patients (Sobel et al., 2001). The ability to sniff predicted performance on olfactory tasks and increasing sniff vigor improved olfactory ability. The problems with sniffing may be due to increased inflammation that may prevent the respiratory system from compensating for the olfactory dysfunction (Huxtable et al., 2011).
Murphy et al. (2024) found that the efficacy of olfactory training for those individuals who had lost their olfactory ability after a COVID-19 infection was quite variable, with large differences in outcomes for different age groups. They surveyed more than 5,500 patients who had olfactory dysfunction following COVID-19 and compared the efficacy of various treatments including steroids and olfactory training. They found that nasal steroid use, given to reduce inflammation, was most effective for those 25–39 years old, with their effectiveness at about 25%, while oral steroid use was most effective for 18–24-year-olds, nearing 50%. Nasal steroids were most effective for treating hyposmia (poor olfactory ability), while oral steroids were most effective for phantosmia (imagined odors). Olfactory training was most effective for 18–24-year-olds, with effectiveness nearing 50%, while 40–60-year-olds had very poor effectiveness scores. Olfactory training was most effective for hyposmia.
Interestingly, several scents have been shown to have anti-inflammatory action in animal models, including: eucalyptol (Juergens et al., 2003), 1,8-cineol (Pries et al., 2023), lavender (Ueno-Iio et al., 2014), ginger (Aimbire et al., 2007), carvacrol (Alavinezhad et al., 2018), Shirazi thyme (Alavinezhad et al., 2017), farnesol (Ku and Lin, 2016), thymoquinone (El Gazzar et al., 2006, thymol (Gholijani et al., 2016), limonene (Hirota et al., 2012), citronellol (Pina et al., 2019), α-terpineol (Pina et al., 2019), Mentha piperita (Hudz et al., 2023), and mango (Rivera et al., 2011; see Ramsey et al., 2020 and Gandhi et al., 2020 for reviews).
The links between olfaction and inflammation seem also to be mediated by diet. Transgenic mice with high levels of the apolipoprotein E gene APOE4 (a risk factor for Alzheimer's disease) and given a diet with low docosahexaenoic acid (an omega-3 fatty acid) had olfactory loss and memory loss along with an increase in IBA-1, an inflammatory factor, in the olfactory bulb. The mice given a diet high in docosahexaenoic acid experienced no olfactory loss, cognitive loss, or elevated inflammation (González et al., 2023). Humans who have a diet low in monosaturated and polyunsaturated fats have an increased risk of both cognitive loss and olfactory loss (Vohra et al., 2023).
Although the list of conditions in which olfactory loss and inflammation co-occur is long, there do exist medical conditions that involve olfactory loss, without reports of inflammation. One example is Kallmann syndrome, in which olfactory bulb development is disordered. Individuals with this condition have olfactory loss as well as deterioration in various brain areas, but it is unclear whether the neurological differences arise from olfactory dysfunction or from the other aspects of the syndrome (Manara et al., 2014; Ottaviano et al., 2015). It certainly is possible that this condition involves an increase in inflammation, even though no one has reported it.
1.2.3 Olfactory loss results in damage to brain regions central to memory function
Given the predictive nature of olfactory loss for memory impairment in dementia, the question arises as to how olfactory loss could play a role in memory loss specifically. In fact, the olfactory system is anatomically unique among the senses, in that it has a “superhighway” that bypasses the thalamus and projects directly to regions of the brain involved in memory processing (Gottfried, 2006). Multiple studies now show that loss of olfaction is associated with deterioration of several brain regions (Bitter et al., 2010a,b; Eckert et al., 2024; Han et al., 2023; Kovalová et al., 2024; Peter et al., 2023; Seubert et al., 2020; Whitcroft et al., 2023; Yao et al., 2018), including the regions of the brain integral to memory acquisition and processing. While the deterioration of brain areas may be due to olfactory loss, it is also possible that the factor that produced the olfactory dysfunction also produced the damage in the other brain areas.
1.2.4 Environmental challenges compromise both olfaction and memory
Having identified inflammation as a possible global mediating factor in the links between olfactory loss and medical conditions and mortality, as well as neuroanatomical factors creating a tighter fit between olfactory loss and memory loss specifically, we can proceed to ask whether specific life experiences may activate such connections. There are indeed experiences that are known to cause both loss of olfactory ability and loss of memory, as well as the more diffuse impairments often referred to as “brain fog”. These include: smoking (Ajmani et al., 2017; Lewis et al., 2021), air pollution (Calderón-Garcidueñas and Ayala, 2022; Wang X. et al., 2021), a wide range of medications (Schiffman, 2018; Chavant et al., 2011), stress (Hoenen et al., 2017; Shields et al., 2017), childhood maltreatment (Maier et al., 2020; O'Shea et al., 2021), illiteracy (Dong et al., 2021; Arce Rentería et al., 2019), menopause (Lee et al., 2019; Maki, 2015), toxins (Upadhyay and Holbrook, 2004; Guan et al., 2022), alcoholism (Maurage et al., 2014; Pitel et al., 2014), respiratory infections (Potter et al., 2020; Matsui et al., 2003), nasal passage blockage (Mohamed et al., 2019; Arslan et al., 2018), head trauma (Lötsch et al., 2016; McInnes et al., 2017), highly processed food (Makhlouf et al., 2024; Gomes Gonçalves et al., 2023), and COVID-19 (Doty, 2022).
In one longitudinal study (Douaud et al., 2022), imaging was used to examine the effects of COVID-19 on the brain for individuals who had contracted a mild case of COVID-19 during the time between two brain scans. The second scan was completed approximately 141 days after testing positive for COVID-19, with an average time of 3 years between scans. Comparisons were made with brain scans from individuals who had not tested positive between scans. In the group who had contracted COVID-19, the researchers found significant damage in the regions of the brain involved in olfaction and memory, including the anterior cingulate cortex, orbitofrontal cortex, ventral striatum, amygdala, hippocampus, and parahippocampal gyrus, and the extent of olfactory loss predicted the extent of the brain damage (Campabadal et al., 2023). These individuals also continued to experience cognitive loss.
1.2.5 Olfactory dysfunction and cognitive loss
Compared to our ancestors, most humans in the affluent world experience a narrower range of evolutionarily relevant odors. In addition, people typically have experiences that damage their olfactory system: air pollution, stress, toxins, anatomical blockage, smoking, various medications, adverse childhood experiences, menopause, and even chronic sinusitis, all of which also trigger memory loss (Eimer and Vassar, 2013). As people age, the deterioration of their olfactory ability accompanies the deterioration of their cognitive ability (Leon and Woo, 2022; Doty et al., 1984), perhaps because olfactory loss results in a significant loss of both gray matter and white matter in the cognitive areas of human brains (Schaie et al., 2004; Bitter et al., 2010a,b).
1.2.5.1 Olfactory loss accompanies dementia
Olfactory dysfunction predicts cognitive dysfunction in humans (Schubert et al., 2008) and the loss of olfactory function precedes or parallels the initiation of a wide variety of cognitive disorders such as: AD, MCI, Parkinson's disease, Lewy body dementia, frontotemporal dementia, Creutzfeldt-Jakob disease, alcoholism, and schizophrenia (Wang Q. et al., 2021; Conti et al., 2013; Adams et al., 2018; Ponsen et al., 2004; Birte-Antina et al., 2018).
1.2.5.2 COVID-19 links olfactory loss and dementia
COVID-19 typically produces olfactory loss, and comparisons of MRI scans from individuals both pre-infection and post-infection have revealed neural deterioration that resembles a decade of aging in the cognitive brain regions that receive olfactory-system projections, along with damage to those areas involved in olfaction (Kollndorfer et al., 2015; Segura et al., 2013). Kay (2022) made the case that COVID-19 infections that produce olfactory loss may foster the cognitive loss that is seen in Alzheimer's disease. In fact, Wang et al. (2022) did a retrospective study of 6,245,282 older adults and showed that people with COVID-19 were at significantly increased risk for new diagnosis of Alzheimer's disease within 360 days after the initial COVID-19 diagnosis. Rahmati et al. (2023) went on to do a meta-analysis of twelve studies tracking over 33 million individuals who either had contracted COVID-19 or did not contract the virus. The pooled analyses showed a significant association between COVID-19 infection and subsequent increased risk for new-onset Alzheimer's disease. Given the remarkable number of physiological systems that were affected by the disease (Nasserie et al., 2021), there is no reason to believe that the olfactory loss was the sole factor in increasing the risk of Alzheimer's, but it may be that the loss of olfaction contributed to the degradation of regions in the brain integral to normal memory functioning, as mentioned previously (Kovalová et al., 2024).
1.3 Efficacy of olfactory enrichment
1.3.1 Olfactory enrichment improves symptoms of cognitive impairment
Shi et al. (2023) reviewed a number of studies examining the effects of exposure to essential oils and found a wide range of benefits to the brain and behavior. The benefits included normalizing neurotransmitter levels, decreasing inflammatory factors, decreasing oxidation, increasing neuroprotective factors, improving memory, decreasing neuronal loss, and suppressing beta amyloid levels.
1.3.2 Olfactory enrichment results in memory benefits for healthy adults
From a preventive perspective, about 20 studies have now been performed showing that increasing olfactory stimulation can improve memory (Vance et al., 2024).
For example, olfactory enrichment improves cognition in older adults. Birte-Antina et al. (2018) provided olfactory enrichment with 4 essential-oil odorants twice a day for 5 months, while controls solved daily Sudoku puzzles. The olfactory-enriched group had a significant improvement of olfactory function, improved verbal function, and decreased depression symptoms. Oleszkiewicz et al. (2022) exposed 68 older adults either to 9 odorants twice a day or to no new odorants for 3–6 months, and found the enriched olfactory experience produced improvements in cognitive abilities, dementia status, and olfactory function relative to controls. Specifically, the Montreal Cognitive Assessment revealed a significant improvement in the olfactory-enriched group relative to controls, and the AD8 Dementia Screening Interview showed that enriched participants had no increase in dementia symptoms over the trial period, while control participants had an increase in symptoms.
Increased complexity of olfactory enrichment also improves dementia symptoms. Cha et al. (2022) exposed 34 older adults with dementia to 40 odorants twice a day for 15 days. The control group consisting of 31 individuals with dementia received no such stimulation. There were no initial differences between groups, and all had a Mini-Mental Status Examination score of at least 10. The results were remarkable, as the olfactory-enriched group showed highly significant improvements in memory, olfactory identification, depression symptoms, attention, and language skills. Olfactory-enriched individuals improved their olfactory identification, while controls did not. The Verbal Fluency Test also showed significant improvements for the enriched group relative to the controls. Similarly, the Boston Naming Test revealed a significant improvement in the enriched subjects relative to controls. The Word-List Memory Test, the Word-List Recall Test, the Word List Recognition Test, and the Geriatric Depression Scale all improved in the enriched group relative to controls.
Lin and Li (2022) exposed older adults with mild-to-moderate dementia to 15 essential oils/essences twice a week for 30-min sessions over a 12-week randomized clinical trial. Participants in the olfactory enrichment group also were asked to relate each scent to a matching photo of the scent source. The olfactory enrichment group showed significant cognitive improvement on the Loewenstein Occupational Therapy Cognitive Assessment-Geriatric test. In addition, olfactory enrichment prevented the increase in plasma beta amyloid seen in the control group.
In an effort to minimize burden and increase compliance, we tested the idea that we could get enhanced neural and cognitive outcomes after even minimal olfactory enrichment at night (Woo et al., 2023). The limitations of the available diffusion devices at the time forced us to use this minimal level of olfactory enrichment. Therefore, we gave olfactory enrichment or control exposures to older adults (60–85 years old) for 2 h every night for 6 months, using a single odorant each night, rotating through seven scents a week (Woo et al., 2023). There were statistically significant differences between enriched and control older adults in their cognitive ability using the Rey Auditory Verbal Learning Test, with enriched individuals scoring 226% better than controls. We also found a statistically significant change in mean diffusivity in the uncinate fasciculus of the enriched group compared to controls.
1.4 Mechanisms of olfactory enrichment: inflammation, neuroanatomy, and cognitive reserve
1.4.1 Reduction of inflammation may be the mechanism by which olfactory enrichment improves neurological symptoms
A range of correlational and causal relationships connect inflammation with olfactory loss. Olfactory loss is associated with an increase in Interleukin-6 (IL-6), which increases both inflammation and the maturation of B cells (Henkin et al., 2013) and is also correlated with an increase in C-reactive protein, which increases in the presence of inflammation as indicated by IL-6 (Ekström et al., 2021). Chronic inflammation is associated with olfactory dysfunction (LaFever and Imamura, 2022). As noted earlier, a proinflammatory diet for older adults with low levels of polyunsaturated fatty acids and monosaturated fatty acids is associated with elevated inflammation, olfactory dysfunction, and cognitive decline (Vohra et al., 2023). Moreover, such a diet increases the risk of dementia (Simopoulos, 2002). The association between olfactory dysfunction and frailty varies with the level of inflammation, as measured by circulating levels of the pro-inflammatory cytokine IL-6 (Laudisio et al., 2019). Hahad et al. (2020) found that inflammation mediated the loss of cognition in those exposed to high levels of pollution.
Turning to causal links, unpleasant odors activate the inflammatory response by increasing tumor necrosis factor alpha (TNFα) and decreasing secretory immunoglobulin A (slgA) in saliva (Anja Juran et al., 2022). Imamura and Hasegawa-Ishii (2016) found that toxins can activate the immune response in the olfactory mucosa. Conversely, smelling pleasant odors suppresses immune activity, and more strikingly, even the act of imagining pleasant odors suppresses the immune response, specifically circulating interleukin-2 (IL-2; Matsunaga et al., 2013; Shibata et al., 1991). Casares et al. (2023) found that 6 months of exposure to menthol odor improved both the memory of young mice and the memory of mice that were modified to model Alzheimer's disease. This odor exposure also suppressed inflammation (IL-1β; Casares et al., 2023). Equally, pharmaceutical suppression of inflammation in those mice improved their memory (Casares et al., 2023).
The suppression of the inflammatory response may therefore underlie the finding that olfactory enrichment can improve memory (Cha et al., 2022; Woo et al., 2023). In addition, olfactory enrichment may improve symptoms of other neurological conditions through a similar mechanism.
1.4.2 Olfactory enrichment creates functional and structural changes in the brain
Increased olfactory stimulation, as experienced daily by master perfumers and sommeliers, who sample many odors each day for months and years, results in increased volume of brain regions that receive olfactory projections (Royet et al., 2013; Filiz et al., 2022). A longitudinal study showed that after a year and a half of olfactory training, sommeliers in training, who sampled dozens of odors every day for months to be able to identify those odors in fine wines, increased the thickness of their entorhinal cortex, a brain region critical for memory formation and consolidation (Filiz et al., 2022; Takehara-Nishiuchi, 2014). This structural change may well have functional benefits. Daily olfactory training for 6 weeks resulted in improved olfactory functioning as well as increased cortical thickness of olfactory processing regions of the brain (Al Aïn et al., 2019), and multiple scents presented daily improved cognition in both adults and older adults (Oleszkiewicz et al., 2021, 2022). Additionally, reversal of some medical issues, such as removing an anatomical blockade in the nasal passages, can result in improved cognition and attention, as measured using neuropsychological assessments and event-related auditory evoked potentials (P300; Arslan et al., 2018). In the memory study with healthy older adults described above (Woo et al., 2023), the enriched group that showed improvement in memory performance also had a statistically significant change in mean diffusivity in the uncinate fasciculus, a brain pathway involved with maintaining cognitive processes.
1.4.3 Electrical stimulation of the olfactory system
One mechanism by which olfactory enrichment may be working is by stimulating specific brain areas. Beta amyloid (Aβ) is elevated in Alzheimer's disease (Pignataro and Middei, 2017). In a rat model of Alzheimer's disease, electrical stimulation of the olfactory bulb reversed the accumulation of beta amyloid (Aβ) plaque formation in the prefrontal cortex, the entorhinal cortex, the dorsal hippocampus, and the ventral hippocampus. It also blocked the impairments in working memory in these rats (Salimi et al., 2024). In addition, electrical stimulation of the olfactory bulb also increased functional connectivity in the brain during a working memory task. It should be noted that transethmoid electrical stimulation of the human olfactory bulb induced olfactory perceptions (Holbrook et al., 2019). Olfactory enrichment may therefore act to stimulate the areas to which the olfactory input projects (Gottfried, 2006). Conversely, intrabulbar injections of Aβ in rats decreased olfactory function, a phenomenon that was more easily triggered in older rats (Alvarado-Martínez et al., 2013).
1.4.4 Making a distinction between contracting a disease vs. experiencing symptoms of a disease
It is important in a discussion regarding causality to consider whether something can differentially change the risk of contracting a disease or the risk of experiencing the symptoms of the disorder. This distinction may be important for our understanding of the relationships between olfaction, cognition, and disease. Typically, the symptoms of the disease accompany the disease itself, but there are exceptions. Some people who contracted the COVID-19 virus, for instance, did not show any symptoms of the disease (Rasmussen and Popescu, 2021). In the phenomenon called cognitive reserve, an individual can develop the neuropathology of Alzheimer's disease, indicating that they had contracted the disease, but show none of the symptoms of severe memory loss (Stern, 2012).
1.4.5 Olfactory ability and cognitive reserve
In mice, long-term olfactory enrichment improves olfactory ability, and it also improves learning and memory for tasks that do not involve odors (Terrier et al., 2024). This effect may represent a form of cognitive reserve in mice, here mediated by an increase in noradrenergic innervation and resulting in the remodeling of brain connectivity in older mice. These data suggest a causal association between olfactory enrichment and cognition. In humans, odor threshold correlates with a measure of cognitive reserve that involves education, while odor discrimination ability correlates with career experiences and leisure experiences. Women had significant correlations between odor threshold, discrimination and identification, and leisure experiences, while men had a significant association between odor threshold and educational experiences (Masala et al., 2023).
1.4.6 Olfactory enrichment may induce cognitive reserve in humans
Cognitive reserve in humans comes from leading a life filled with environmental enrichment, with a high level of education, a cognitively engaging career, and a high level of socializing (Stern, 2012). Conversely, illiterate individuals have the highest probability of developing Alzheimer's disease (Dong et al., 2021), and they have little of the enrichment that seems to protect those with cognitive reserve (Brucki, 2010). Perhaps the uniquely direct connections of the olfactory system to the regions of the brain that are critical for memory functioning allow the olfactory system to rapidly induce what may be called cognitive reserve in humans.
2 Discussion
There is reason to believe that the relationship between olfactory loss and medical conditions may be more than coincidental. First, there are many instances where both are present, with at least 139 medical conditions showing associations with olfactory dysfunction. Second, olfactory loss precedes the expression of the medical condition, raising the possibility that olfactory loss makes the brain or body vulnerable to expressing the symptoms of these medical conditions. Third, olfactory loss prospectively predicts both memory loss and all-cause mortality.
Inflammation could be a key mechanism underlying a causal relationship between olfaction and memory; neuroanatomical and environmental factors also play a role. While the causal arrow may go either way, it is possible that for some conditions, it is the olfactory loss that raises the risk of expressing the symptoms of those conditions.
If olfactory loss increases the risk of either developing these medical conditions or having the symptoms of the conditions, then it may be possible to prevent the onset of symptoms from these conditions. Studies show that olfactory enrichment improves memory performance in healthy adults and there are even greater improvements found for adults with dementia. These benefits may be mediated via reduction of inflammation.
A suggestive notion underlying many of these observations is that neuropathology is not always symptomatic, thanks to phenomena such as cognitive reserve. For instance, people with cognitive reserve have the neuropathology of Alzheimer's disease, but they don't have the memory-loss symptoms. The olfactory system may be involved in generating protective cognitive reserve especially for memory-related conditions. More widely, since pleasant scents can decrease harmful inflammation, it seems possible that olfactory enrichment may reduce the symptoms of other medical conditions.
Future directions for research in this area would include simultaneously studying both olfaction and inflammation in specific medical conditions, studying more conditions in individuals who have olfactory dysfunction, and studying these variables over time. It also would be interesting to block inflammation in specific medical conditions to determine the effects on olfaction.
Statements
Data availability statement
The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.
Author contributions
ML: Writing – original draft. ET: Conceptualization, Writing – review & editing. CW: Writing – review & editing.
Funding
The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.
Acknowledgments
We thank Dr. Tom Lane for his insightful comments on the manuscript.
Conflict of interest
ML holds equity in Science Lab 3, which is developing Memory Air®, a system that automatically delivers olfactory enrichment. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References
1
Abele M. Riet A. Hummel T. Klockgether T. Wüllner U. (2003). Olfactory dysfunction in cerebellar ataxia and multiple system atrophy. J. Neurol.250, 1453–1455. 10.1007/s00415-003-0248-4
2
Acosta-Ampudia Y. Monsalve D. M. Castillo-Medina L. F. Rodríguez Y. Pacheco Y. Halstead S. et al . (2018). Autoimmune neurological conditions associated with Zika virus infection. Front. Mol. Neurosci. 11:116. 10.3389/fnmol.2018.00116
3
Adams D. R. Kern D. W. Wroblewski K. E. McClintock M. K. Dale W. Pinto J. M. (2018). Olfactory dysfunction predicts subsequent dementia in older U.S. Adults. J. Am. Geriatr. Soc. 66, 140–144. 10.1111/jgs.15048
4
Adler C. H. Gwinn K. A. Newman S. (1998). Olfactory function in restless legs syndrome. Mov. Disord. 13, 563–565. 10.1002/mds.870130332
5
Ahmed O. G. Rowan N. R. (2020). Olfactory dysfunction and chronic rhinosinusitis. Immunol. Allergy Clin. North Am. 40, 223–232. 10.1016/j.iac.2019.12.013
6
Aimbire F. Penna S. C. Rodrigues M. Rodrigues K. C. Lopes-Martins R. A. Sertié J. A. (2007). Effect of hydroalcoholic extract of Zingiber officinalis rhizomes on LPS-induced rat airway hyperreactivity and lung inflammation. Prostagland. Leukot. Essent. Fatty Acids77, 129–138. 10.1016/j.plefa.2007.08.008
7
Aiyegbusi O. L. Hughes S. E. Turner G. Rivera S. C. McMullan C. Chandan J. S. et al . (2021). Symptoms, complications and management of long COVID: a review. J. R. Soc. Med. 114, 428–442. 10.1177/01410768211032850
8
Ajmani G. S. Suh H. H. Wroblewski K. E. Pinto J. M. (2017). Smoking and olfactory dysfunction: a systematic literature review and meta-analysis. Laryngoscope127, 1753–1761. 10.1002/lary.26558
9
Akizuki H. Wada T. Tabuchi K. (2022). Inflammation-based score (combination of platelet count and neutrophil-to-lymphocyte ratio) predicts pharyngocutaneous fistula after total laryngectomy. Laryngoscope132, 1582–1587. 10.1002/lary.29970
10
Akşit E. Çil Ö. Ç. (2020). Olfactory dysfunction in patients with ischemic heart failure. Acta Cardiol. Sin. 36, 133–139. 10.6515/ACS.202003_36(2).20190812B
11
Akyol L. Günbey E. Karlı R. Önem S. Özgen M. Sayarlioglu M. (2016). Evaluation of olfactory function in Behçet's disease. Eur. J. Rheumatol. 3, 153–156. 10.5152/eurjrheum.2016.017
12
Al Aïn S. Poupon D. Hétu S. Mercier N. Steffener J. Frasnelli J. (2019). Smell training improves olfactory function and alters brain structure. Neuroimage189, 45–54. 10.1016/j.neuroimage.2019.01.008
13
Alavinezhad A. Hedayati M. Boskabady M. H. (2017). The effect of Zataria multiflora and carvacrol on wheezing, FEV1 and plasma levels of nitrite in asthmatic patients. Avicenna J. Phytomed. 7, 531–541.
14
Alavinezhad A. Khazdair M. R. Boskabady M. H. (2018). Possible therapeutic effect of carvacrol on asthmatic patients: a randomized, double blind, placebo-controlled, Phase II clinical trial. Phytother. Res. 32, 151–159. 10.1002/ptr.5967
15
Alberti A. Sarchielli P. Gallinella E. Floridi A. Floridi A. Mazzotta et al . (2003). Plasma cytokine levels in patients with obstructive sleep apnea syndrome: a preliminary study. J. Sleep Res.12, 305–311. 10.1111/j.1365-2869.2003.00361.x
16
Al-Daghri N. M. Rahman S. Sabico S. Yakout S. Wani K. Al-Attas O. S. et al . (2016). Association of vitamin B12 with pro-inflammatory cytokines and biochemical markers related to cardiometabolic risk in Saudi subjects. Nutrients8:460. 10.3390/nu8090460
17
Alfaro R. Doty R. T. Narayanan A. Lugar H. Hershey T. Pepino M. Y. (2020). Taste and smell function in Wolfram syndrome. Orphanet J. Rare Dis. 15:57. 10.1186/s13023-020-1335-7
18
Alosco M. L. Jarnagin J. Tripodis Y. Platt M. Martin B. Chaisson C. E. et al . (2017). Olfactory function and associated clinical correlates in former National Football League players. J. Neurotrauma34, 772–780. 10.1089/neu.2016.4536
19
Alshammery S. Patel S. Jones H. F. Han V. X. Gloss B. S. Gold W. A. et al . (2022). Common targetable inflammatory pathways in brain transcriptome of autism spectrum disorders and Tourette syndrome. Front. Neurosci.16:999346. 10.3389/fnins.2022.999346
20
Alster P. Madetko N. Friedman A. (2021). Neutrophil-to-lymphocyte ratio (NLR) at boundaries of progressive supranuclear palsy syndrome (PSPS). and corticobasal syndrome (CBS). Neurol. Neurochir. Pol. 55, 97–101. 10.5603/PJNNS.a2020.0097
21
Alster P. Madetko N. Koziorowski D. Friedman A. (2020). microglial activation and inflammation as a factor in the pathogenesis of progressive supranuclear palsy (PSP). Front. Neurosci. 14:893. 10.3389/fnins.2020.00893
22
Alvarado-Martínez R. Salgado-Puga K. Peña-Ortega F. (2013). Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS ONE8:e75745. 10.1371/journal.pone.0075745
23
Amin J. Erskine D. Donaghy P. C. Surendranathan A. Swann P. Kunicki A. P. et al . (2022). Inflammation in dementia with Lewy bodies. Neurobiol. Dis. 168:105698. 10.1016/j.nbd.2022.105698
24
Amital H. Agmon-Levin N. Shoenfeld N. Arnson Y. Amital D. Langevitz P. et al . (2014). Olfactory impairment in patients with the fibromyalgia syndrome and systemic sclerosis. Immunol. Res. 60, 201–207. 10.1007/s12026-014-8573-5
25
Anja Juran S. Tognetti A. Lundström J. N. Kumar L. Stevenson R. J. Lekander M. et al . (2022). Disgusting odors trigger the oral immune system. Evol. Med. Public Health11, 8–17. 10.1093/emph/eoac042
26
Apolloni S. Milani M. D'Ambrosi N. (2022). Neuroinflammation in Friedreich's ataxia. Int. J. Mol. Sci.23:6297. 10.3390/ijms23116297
27
Apter A. J. Gent J. F. Frank M. (1999). Fluctuating olfactory sensitivity and distorted odor perception in allergic rhinitis. Arch. Otolaryngol. Head Neck Surg.125, 1005–1010. 10.1001/archotol.125.9.1005
28
Arce Rentería M. Vonk J. M. J. Felix G. Avila J. F. Zahodne L. B. Dalchand E. et al . (2019). Illiteracy, dementia risk, and cognitive trajectories among older adults with low education. Neurology93, e2247–e2256. 10.1212/WNL.0000000000008587
29
Arslan F. Tasdemir S. Durmaz A. Tosun F. (2018). The effect of nasal polyposis related nasal obstruction on cognitive functions. Cogn. Neurodyn. 12, 385–390. 10.1007/s11571-018-9482-4
30
Atalar A. Ç. Erdal Y. Tekin B. Yildiz M. Akdogan Ö. Emre U. (2018). Olfactory dysfunction in multiple sclerosis. Mult. Scler. Relat. Disord. 21, 92–96. 10.1016/j.msard.2018.02.032
31
Azotla-Vilchis C. N. Sanchez-Celis D. Agonizantes-Juárez L. E. Suárez-Sánchez R. Hernández-Hernández J. M. Peña J. et al . (2021). Transcriptome analysis reveals altered inflammatory pathway in an inducible glial cell model of myotonic dystrophy type 1. Biomolecules11:159. 10.3390/biom11020159
32
Bafei S. E. C. Zhao X. Chen C. Sun J. Zhuang Q. Lu X. et al . (2023). Interactive effect of increased high sensitive C-reactive protein and dyslipidemia on cardiovascular diseases: a 12-year prospective cohort study. Lipids Health Dis. 22:113. 10.1186/s12944-023-01894-0
33
Bagherieh S. Arefian N. M. Ghajarzadeh M. Tafreshinejad A. Zali A. Mirmosayyeb O. et al . (2023). Olfactory dysfunction in patients with Parkinson's disease: a systematic review and meta-analysis. Curr. J. Neurol. 22, 249–254. 10.18502/cjn.v22i4.14530
34
Barnes P. J. (2016). Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol.138, 16–27. 10.1016/j.jaci.2016.05.011
35
Barone M. V. Auricchio R Nanayakkara M. Greco L. Troncone R. Auricchio S. (2022). Pivotal role of inflammation in celiac disease. Int. J. Mol. Sci.23:7177. 10.3390/ijms23137177
36
Baudouin C. Kolko M. Melik-Parsadaniantz S. Messmer E. M. (2021). Inflammation in glaucoma: from the back to the front of the eye, and beyond. Prog. Retin. Eye Res. 83:100916. 10.1016/j.preteyeres.2020.100916
37
Benedetti F. Aggio V. Pratesi M. L. Greco G. Furlan R. (2020). Neuroinflammation in bipolar depression. Front. Psychiatry11:71. 10.3389/fpsyt.2020.00071
38
Berkiten G. Tutara B. G?¨kdenb Y. Sengiz S. Karaketir S. Sari?am S. S. et al . (2024). Does celiac disease affect smell sensation, mucociliary clearance and nasal smear?J. Ear Nose Throat Head Neck Surg.3, 23–29. 10.24179/kbbbbc.2023-99179
39
Berlin H. A. Stern E. R. Ng J. Zhang S. Rosenthal D. Turetzky R. et al . (2017). Altered olfactory processing and increased insula activity in patients with obsessive-compulsive disorder: an fMRI study. Psychiatry Res. Neuroimaging262, 15–24. 10.1016/j.pscychresns.2017.01.012
40
Bershad E. M. Urfy M. Z. Calvillo E. Tang R. Cajavilca C. Lee A. G. et al . (2014). Marked olfactory impairment in idiopathic intracranial hypertension. J. Neurol. Neurosurg. Psychiatr.85, 959–964. 10.1136/jnnp-2013-307232
41
Bertone-Johnson E. R. Manson J. E. Purdue-Smithe A. C. Hankinson S. E. Rosner B. A. Whitcomb B. W. (2019). A prospective study of inflammatory biomarker levels and risk of early menopause. Menopause26, 32–38. 10.1097/GME.0000000000001162
42
Bettison T. M. Mahmut M. K. Stevenson R. J. (2013). The relationship between psychopathy and olfactory tasks sensitive to orbitofrontal cortex function in a non-criminal student sample. Chemosens. Percept.6, 198–210. 10.1007/s12078-013-9157-9
43
Bigman G. (2020). Age-related smell and taste impairments and vitamin D associations in the U.S. Adults National Health and Nutrition Examination Survey. Nutrients12:984. 10.3390/nu12040984
44
Birte-Antina W. Ilona C. Antje H. Thomas H. (2018). Olfactory training with older people. Int. J. Geriatr. Psychiatry33, 212–220. 10.1002/gps.4725
45
Biscetti L. De Vanna G. Cresta E. Corbelli I. Gaetani L. Cupini L. et al . (2021). Headache and immunological/autoimmune disorders: a comprehensive review of available epidemiological evidence with insights on potential underlying mechanisms. J. Neuroinflamm.18:259. 10.1186/s12974-021-02229-5
46
Bitter T. Bruderle J. Gudziol H. Burmeister H. P. Gaser C. Guntinas-Lichius O. (2010a). Gray and white matter reduction in hyposmic subjects - a voxel-based morphometry study. Brain Res.1347, 42–47. 10.1016/j.brainres.2010.06.003
47
Bitter T. Gudziol H. Burmeister H. P. Mentzel H. J. Guntinas-Lichius O. Gaser C. (2010b). Anosmia leads to a loss of gray matter in cortical brain areas. Chem. Senses35, 407–415. 10.1093/chemse/bjq028
48
Bonomi M. Patsias A. Posner M. Sikora A. (2014). The role of inflammation in head and neck cancer. Adv. Exp. Med. Biol. 816, 107–127. 10.1007/978-3-0348-0837-8_5
49
Bor A. S. Niemansburg S. L. Wermer M. J. Rinkel G. J. (2009). Anosmia after coiling of ruptured aneurysms: prevalence, prognosis, and risk factors. Stroke40, 2226–2228. 10.1161/STROKEAHA.108.539445
50
Bower E. Szajer J. Mattson S. N. Riley E. P. Murphy C. (2013). Impaired odor identification in children with histories of heavy prenatal alcohol exposure. Alcohol47, 275–278. 10.1016/j.alcohol.2013.03.002
51
Bränn E. Fransson E. White R. A. Papadopoulos F. C. Edvinsson Å. Kamali-Moghaddam M. et al . (2020). Inflammatory markers in women with postpartum depressive symptoms. J. Neurosci. Res. 98, 1309–1321. 10.1002/jnr.24312
52
Brás I. C. Xylaki M. Outeiro T. F. (2020). Mechanisms of alpha-synuclein toxicity: an update and outlook. Prog. Brain Res. 252, 91–129. 10.1016/bs.pbr.2019.10.005
53
Bright F. Werry E. L. Dobson-Stone C. Piguet O. Ittner L. M. Halliday G. M. et al . (2019). Neuroinflammation in frontotemporal dementia. Nat. Rev. Neurol. 15, 540–555. 10.1038/s41582-019-0231-z
54
Brown C. H. 4th Morrissey C. Ono M. Yenokyan G. Selnes O. A. Walston J. et al . (2015). Impaired olfaction and risk of delirium or cognitive decline after cardiac surgery. J. Am. Geriatr. Soc. 63, 16–23. 10.1111/jgs.13198
55
Brucki S. M. D. (2010). Illiteracy and dementia. Dement. Neuropsychol. 4, 153–157. 10.1590/S1980-57642010DN40300002
56
Burges Watson D. L. Campbell M. Hopkins C. Smith B. Kelly C. Deary V. (2021). Altered smell and taste: anosmia, parosmia and the impact of long COVID-PLoS ONE 16:e0256998. 10.1371/journal.pone.0256998
57
Buskova J. Klaschka J. Sonka K. Nevsimalova S. (2010). Olfactory dysfunction in narcolepsy with and without cataplexy. Sleep Med. 11, 558–561. 10.1016/j.sleep.2010.01.009
58
Calderón-Garcidueñas L. Ayala A. (2022). Air pollution, ultrafine particles, and your brain: are combustion nanoparticle emissions and engineered nanoparticles causing preventable fatal neurodegenerative diseases and common neuropsychiatric outcomes?Environ. Sci. Tech. 56, 6847–6856. 10.1021/acs.est.1c04706
59
Campabadal A. Oltra J. Junqué C. Guillen N. Botí M. Á. Sala-Llonch R. et al . (2023). Structural brain changes in post-acute COVID-19 patients with persistent olfactory dysfunction. Ann. Clin. Transl. Neurol.10, 195–203. 10.1002/acn3.51710
60
Casares N. Alfaro M. Cuadrado-Tejedor M. Lasarte-Cia A. Navarro F. Vivas I. et al . (2023). Improvement of cognitive function in wild-type and Alzheimer's disease mouse models by the immunomodulatory properties of menthol inhalation or by depletion of T regulatory cells. Front. Immunol.14:1130044. 10.3389/fimmu.2023.1130044
61
Castiglione A. Möller C. (2022). Usher syndrome. Audiol. Res. 12, 42–65. 10.3390/audiolres12010005
62
Cecchini M. P. Viviani D. Sandri M. Hähner A. Hummel T. Zancanaro C. (2016). Olfaction in people with Down syndrome: a comprehensive assessment across four decades of age. PLoS ONE11:e0146486. 10.1371/journal.pone.0146486
63
Cecoro G. Annunziata M. Iuorio M. T. Nastri L. Guida L. (2020). Periodontitis, low-grade inflammation and systemic health: a scoping review. Medicina56:272. 10.3390/medicina56060272
64
Cesari M. Penninx B. W. Newman A. B. Kritchevsky S. B. Nicklas B. J. Sutton-Tyrrell K. et al . (2003). Inflammatory markers and onset of cardiovascular events: results from the Health ABC study. Circulation108, 2317–2322. 10.1161/01.CIR.0000097109.90783.FC
65
Cha H. Kim S. Kim H. Kim G. Kwon K. Y. (2022). Effect of intensive olfactory training for cognitive function in patients with dementia. Geriatr. Gerontol. Int. 22, 5–11. 10.1111/ggi.14287
66
Challakere Ramaswamy V. M. Butler T. Ton B. Wilhelm K. Mitchell P. B. Knight L. et al . (2023). Neuropsychiatric correlates of olfactory identification and traumatic brain injury in a sample of impulsive violent offenders. Front. Psychol.14, 1254574. 10.3389/fpsyg.2023.1254574
67
Challakere Ramaswamy V. M. Schofield P. W. (2022). Olfaction and executive cognitive performance: a systematic review. Front. Psychol.13:871391. 10.3389/fpsyg.2022.871391
68
Chamberlin K. W. Yuan Y. Li C. Luo Z. Reeves M. Kucharska-Newton A. et al . (2024). Olfactory impairment and the risk of major adverse cardiovascular outcomes in older adults. J. Am. Heart Assoc. 13:e033320. 10.1161/JAHA.123.033320
69
Chang K. Zaikos T. Kilner-Pontone N. Ho C. Y. (2024). Mechanisms of COVID-19-associated olfactory dysfunction. Neuropath. Appl. Neurobiol. 50:e12960. 10.1111/nan.12960
70
Chao L. L. (2024). Olfactory and cognitive decrements in 1991 Gulf War veterans with gulf war illness/chronic multisymptom illness. Environ. Health23, 14–23. 10.1186/s12940-024-01058-2
71
Charbel Issa P. Reuter P. Kühlewein L. Birtel J. Gliem M. Tropitzsch A. et al . (2018). Olfactory dysfunction in patients with CNGB1-associated retinitis pigmentosa. JAMA Ophthalmol.136, 761–769. 10.1001/jamaophthalmol.2018.162
72
Chavant F. Favrelière S. Lafay-Chebassier C. Plazanet C. Pérault-Pochat M. C. (2011). Memory disorders associated with consumption of drugs: updating through a case/noncase study in the French PharmacoVigilance Database. Br. J. Clin. Pharmacol. 72, 898–904. 10.1111/j.1365-2125.2011.04009.x
73
Chaves-Filho A. M. Braniff O. Angelova A. Deng Y. Tremblay M. È. (2023). Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res. Bull.201:110702. 10.1016/j.brainresbull.2023.110702
74
Chen L. Wang X. Doty R. L. Cao S. Yang J. Sun F. et al . (2021). Olfactory impairment in Wilson's disease. Brain Behav. 11:e02022. 10.1002/brb3.2022
75
Chen X. Guo W. Yu L. Luo D. Xie L. Xu J. (2021). Association between anxious symptom severity and olfactory impairment in young adults with generalized anxiety disorder: a case-control study. Neuropsychiatr. Dis. Treat. 17, 2877–2883. 10.2147/NDT.S314857
76
Cheng X. Choi J. S. Waxman S. G. Dib-Hajj S. D. (2021). Sodium channels and beyond in peripheral nerve disease: modulation by cytokines and their effector protein kinases. Neurosci. Lett. 741:135446. 10.1016/j.neulet.2020.135446
77
Choi J. S. Jang S. S. Kim J. Hur K. Ference E. Wrobel B. (2021). Association between olfactory dysfunction and mortality in US adults. JAMA Otolaryngol. Head Neck Surg. 147, 49–55. 10.1001/jamaoto.2020.3502
78
Connelly T. Farmer J. M. Lynch D. R. Doty R. L. (2002). Olfactory dysfunction in degenerative ataxias. J. Neurol. Neurosurg. Psychiatr.74, 1435–1437. 10.1136/jnnp.74.10.1435
79
Constantinescu C. S. Raps E. C. Cohen J. A. West S. E. Doty R. L. (1994). Olfactory disturbances as the initial or most prominent symptom of multiple sclerosis. J. Neurol. Neurosurg. Psychiatr.57, 1011–1012. 10.1136/jnnp.57.8.1011
80
Conti M. Z. Vicini-Chilovi B. Riva M. Zanetti M. Liberini P. Padovani A. et al . (2013). Odor identification deficit predicts clinical conversion from mild cognitive impairment to dementia due to Alzheimer's disease. Arch. Clin. Neuropsychol. 28, 391–399. 10.1093/arclin/act032
81
Coskun Benlidayi I. (2019). Role of inflammation in the pathogenesis and treatment of fibromyalgia. Rheumatol. Int. 39, 781–791. 10.1007/s00296-019-04251-6
82
Cox A. J. West N. P. Cripps A. W. (2015). Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 3, 207–215. 10.1016/S2213-8587(14)70134-2
83
Croy I. Schellong J. Gerber J. Joraschky P. Iannilli E. Hummel T. (2010). Women with a history of childhood maltreatment exhibit more activation in association areas following non-traumatic olfactory stimuli: a fMRI study. PLoS ONE5:e9362. 10.1371/journal.pone.0009362
84
Dabravolski S. A. Nikiforov N. G. Eid A. H. Nedosugova L. V. Starodubova A. V. Popkova T. V. et al . (2021). Mitochondrial dysfunction and chronic inflammation in polycystic ovary syndrome. Int. J. Mol. Sci.22:3923. 10.3390/ijms22083923
85
Dahlman A. Puthia M. Petrlova J. Schmidtchen A. Petruk G. (2021). Thrombin-derived c-terminal peptide reduces Candida-induced inflammation and infection in vitro and in vivo. Antimicrob. Agents Chemother. 65:e0103221. 10.1128/AAC.01032-21
86
Dalle S. Rossmeislova L. Koppo K. (2017). The role of inflammation in age-related sarcopenia. Front. Physiol. 8:1045. 10.3389/fphys.2017.01045
87
Dalton B. Campbell I. C. Chung R. Breen G. Schmidt U. Himmerich H. (2018). Inflammatory markers in anorexia nervosa: an exploratory study. Nutrients10:1573. 10.3390/nu10111573
88
Datta S. Jha K. Ganguly A. Kumar T. (2023). Olfactory dysfunction as a marker for essential hypertension in a drug-naive adult population: A hospital-based study. Cureus15:e41920. 10.7759/cureus.41920
89
Deeks S. G. Tracy R. Douek D. C. (2013). Systemic effects of inflammation on health during chronic HIV infection. Immunity39, 633–645. 10.1016/j.immuni.2013.10.001
90
Deng H. Y. Feng J. R. Zhou W. H. Kong W. F. Ma G. C. Hu T. F. et al . (2020). Olfactory sensitivity is related to erectile function in adult males. Front. Cell Devel. Biol.8:93. 10.3389/fcell.2020.00093
91
Derin S. Koseoglu S. Sahin C. Sahan M. (2016). Effect of vitamin B12 deficiency on olfactory function. Int. Forum Allergy Rhinol.6, 1051–1055. 10.1002/alr.21790
92
Desiato V. M. Soler Z. M. Nguyen S. A. Salvador C. Hill J. B. Lamira J. et al . (2021). Evaluating the relationship between olfactory function and loneliness in community-dwelling individuals: a cross-sectional study. Am. J. Rhinol. Allergy35, 334–340. 10.1177/1945892420958365
93
Devanand D. P. Lee S. Manly J. Andrews H. Schupf N. Masurkar A. et al . (2015). Olfactory identification deficits and increased mortality in the community. Ann. Neurol. 78, 401–411. 10.1002/ana.24447
94
Dinc M. E. Dalgic A. Ulusoy S. Dizdar D. Develioglu O. Topak M. (2016). Does iron deficiency anemia affect olfactory function?Acta Otolaryngol. 136, 754–757. 10.3109/00016489.2016.1146410
95
Dirchwolf M. Ruf A. E. (2015). Role of systemic inflammation in cirrhosis: from pathogenesis to prognosis. World J. Hepatol.7, 1974–1981. 10.4254/wjh.v7.i16.1974
96
Dong Y. Wang Y. Liu K. Liu R. Tang S. Zhang Q. et al . (2021). Olfactory impairment among rural-dwelling Chinese older adults: prevalence and associations with demographic, lifestyle, and clinical factors. Front. Aging Neurosci.13:621619. 10.3389/fnagi.2021.621619
97
Doty R. L. (2022). Olfactory dysfunction in COVID-19: pathology and long-term implications for brain health. Trends Mol. Med. 28, 781–794. 10.1016/j.molmed.2022.06.005
98
Doty R. L. Shaman P. Applebaum S. L. Giberson R. Siksorski L. Rosenberg L. (1984). Smell identification ability: changes with age. Science226, 1441–1443. 10.1126/science.6505700
99
Dou Y. Blaine Crowley T. Gallagher S. Bailey A. McGinn D. Zackai E. et al . (2020). Increased T-cell counts in patients with 22q11.2 deletion syndrome who have anxiety. Am. J. Med. Genet. A. 182, 1815–1818. 10.1002/ajmg.a.61588
100
Douaud G. Lee S. Alfaro-Almagro F. Arthofer C. Wang C. McCarthy P. et al . (2022). SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature604, 697–707. 10.1038/s41586-022-04569-5
101
East B. S. Wilson D. A. (2019). A hunger for odour: Leptin modulation of olfaction. Acta Physiol. 227:e13363. 10.1111/apha.13363
102
Eckert M. A. Benitez A. Soler Z. M. Dubno J. R. Schlosser R. J. (2024). Gray matter and episodic memory associations with olfaction in middle-aged to older adults. Int. Forum Allergy Rhinol. 14, 961–971. 10.1002/alr.23290
103
Eimer W. A. Vassar R. (2013). Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation. Mol. Neurodegener. 8:2. 10.1186/1750-1326-8-2
104
Ekström I. Sjölund S. Nordin S. Nordin Adolfsson A. Adolfsson R. Nilsson L. G. et al . (2017). Smell loss predicts mortality risk regardless of dementia conversion. J. Am. Geriatr. Soc. 65, 1238–1243. 10.1111/jgs.14770
105
Ekström I. Vetrano D. L. Papenberg G. Laukka E. J. (2021). Serum C-reactive protein is negatively associated with olfactory identification ability in older adults. Iperception12:20416695211009928. 10.1177/20416695211009928
106
El Gazzar M. El Mezayen R. Nicolls M. R. Marecki J. C. Dreskin S. C. (2006).Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in a mouse model of allergic asthma. Biochim. Biophys. Acta1760, 1088–1095. 10.1016/j.bbagen.2006.03.006
107
Elhassanien M. E. M. Bahnasy W. S. El-Heneedy Y. A. E. Kishk A. M. Tomoum M. O. Ramadan K. M. et al . (2021). Olfactory dysfunction in essential tremor versus tremor dominant Parkinson disease. Clin. Neurol. Neurosurg. 200:106352. 10.1016/j.clineuro.2020.106352
108
Eliyan Y. Wroblewski K. E. McClintock M. K. Pinto J. M. (2021). Olfactory dysfunction predicts the development of depression in older US adults. Chem. Senses46:bjaa075. 10.1093/chemse/bjaa075
109
Fernandez-Ruiz J. Diaz R. Hall-Haro C. Vergara P. Fiorentini A. Nunez L. et al . (2003). Olfactory dysfunction in hereditary ataxia and basal ganglia disorders. Neuroreport14, 1339–1341. 10.1097/00001756-200307180-00011
110
Filiz G. Poupon D. Banks S. Fernandez P. Frasnelli J. (2022). Olfactory bulb volume and cortical thickness evolve during sommelier training. Hum. Brain Mapp. 43, 2621–2633. 10.1002/hbm.25809
111
Firth N. C. Primativo S. Marinescu R. V. Shakespeare T. J. Suarez-Gonzalez A. Lehmann M. et al . (2019). Longitudinal neuroanatomical and cognitive progression of posterior cortical atrophy. Brain142, 2082–2095. 10.1093/brain/awz136
112
Fischer M. Zopf Y. Elm C. Pechmann G. Hahn E. G. Schwab D. et al . (2014). Subjective and objective olfactory abnormalities in Crohn's disease. Chem. Senses39, 529–538. 10.1093/chemse/bju022
113
Fluitman K. S. van den Broek T. J. Nieuwdorp M. Visser M. IJzerman R. G. Keijser B. J. F. (2021). Associations of the oral microbiota and Candida with taste, smell, appetite and undernutrition in older adults. Sci. Rep.11:23254. 10.1038/s41598-021-02558-8
114
Francelle L. Mazzulli J. R. (2022). Neuroinflammation in Gaucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson's disease. Brain Res. 1780:147798. 10.1016/j.brainres.2022.147798
115
Frangou E. Vassilopoulos D. Boletis J. Boumpas D. T. (2019). An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): Implications for the pathogenesis and treatment. Autoimmun. Rev. 18, 751–760. 10.1016/j.autrev.2019.06.011
116
Frasnelli J. Laguë-Beauvais M. LeBlanc J. Alturki A. Y. Champoux M. C. Couturier C. et al . (2016). Olfactory function in acute traumatic brain injury. Clin. Neurol. Neurosurg. 140, 68–72. 10.1016/j.clineuro.2015.11.013
117
Frasnelli J. A. Temmel A. F. Quint C. Oberbauer R. Hummel T. (2002). Olfactory function in chronic renal failure. Am. J. Rhinol.16, 275–279.
118
Fuller-Thomson E. R. Fuller-Thomson E. G. (2019). Relationship between poor olfaction and mortality. Ann. Intern. Med. 171, 525–526. 10.7326/L19-0467
119
Galvez V. Diaz R. Hernandez-Castillo C. R. Campos-Romo A. Fernandez-Ruiz J. (2014). Olfactory performance in spinocerebellar ataxia type 7 patients. Parkinsonism Rel. Disord. 20, 499–502. 10.1016/j.parkreldis.2014.01.024
120
Gamain J. Herr T. Fleischmann R. Stenner A. Vollmer M. Willert C. et al . (2021). Smell and taste in idiopathic blepharospasm. J. Neural Transm. 128, 1215–1224. 10.1007/s00702-021-02366-4
121
Gandhi G. R. Leão G. C. S. Calisto V. K. D. S. Vasconcelos A. B. S. Almeida M. L. D. Quintans J. S. S. et al . (2020). Modulation of interleukin expression by medicinal plants and their secondary metabolites: A systematic review on anti-asthmatic and immunopharmacological mechanisms. Phytomedicine70:153. 10.1016/j.phymed.2020.153229
122
Garrett-Laster M. Russell R. M. Jacques P. F. (1984). Impairment of taste and olfaction in patients with cirrhosis: the role of vitamin A. Hum. Nutr. Clin.38, 203–214.
123
Geran R. Uecker F. C. Prüss H. Haeusler K. G. Paul F. Ruprecht K. et al . (2019). Olfactory and gustatory dysfunction in patients with autoimmune encephalitis. Front. Neurol. 10:480. 10.3389/fneur.2019.00480
124
Gholijani N. Gharagozloo M. Farjadian S. Amirghofran Z. (2016). Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages. J. Immunotoxicol. 13, 157–164. 10.3109/1547691X.2015.1029145
125
Gillissen A. Paparoupa M. (2015). Inflammation and infections in asthma. Clin. Respir. J. 9, 257–269. 10.1111/crj.12135
126
Goldstein D. S. Sewell L. (2009). Olfactory dysfunction in pure autonomic failure: implications for the pathogenesis of Lewy body diseases. Parkinson. Relat. Disord. 1, 516–520. 10.1016/j.parkreldis.2008.12.009
127
Gomes Gonçalves N. Vidal Ferreira N. Khandpur N. Martinez Steele E. Bertazzi Levy R. Andrade Lotufo P. et al . (2023). Association between consumption of ultraprocessed foods and cognitive decline. JAMA Neurol.80, 142–150. 10.1001/jamaneurol.2022.4397
128
González L. M. Bourissai A. Lessard-Beaudoin M. Lebel R. Tremblay L. Lepage M. et al . (2023). Amelioration of cognitive and olfactory system deficits in APOE4 transgenic mice with DHA treatment. Mol. Neurobiol. 60, 5624–5641. 10.1007/s12035-023-03401-z
129
Gopinath B. Sue C. M. Kifley A. Mitchell P. (2012). The association between olfactory impairment and total mortality in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 67, 204–209. 10.1093/gerona/glr165
130
Gossrau G. Zaranek L. Klimova A. Sabatowski R. Koch T. Richter M. et al . (2023). Olfactory training reduces pain sensitivity in children and adolescents with primary headaches. Front. Pain Res.4:1091984. 10.3389/fpain.2023.1091984
131
Goswami R. Bello A. I. Bean J. Costanzo K. M. Omer B. Cornelio-Parra D. et al . (2022). The molecular basis of spinocerebellar ataxia type 7. Front. Neurosci. 16:818757. 10.3389/fnins.2022.818757
132
Gottfried J. A. (2006). Smell: central nervous processing. Adv. Otorhinolaryngol. 63, 44–69. 10.1159/000093750
133
Graus F. Titulaer M. J. Balu R. Benseler S. Bien C. G. Cellucci T. et al . (2016). A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 15, 391–404. 10.1016/S1474-4422(15)00401-9
134
Groppa S. Gonzalez-Escamilla G. Eshaghi A. Meuth S. G. Ciccarelli O. (2021). Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help?Brain Commun. 3:fcab237. 10.1093/braincomms/fcab237
135
Guan R. Wang T. Dong X. Du K. Li J. Zhao F. et al . (2022). Effects of co-exposure to lead and manganese on learning and memory deficits. J. Environ. Sci. 121, 65–76. 10.1016/j.jes.2021.09.012
136
Gunzer W. (2017). Changes of olfactory performance during the process of aging-psychophysical testing and its relevance in the fight against malnutrition. J. Nutr. Health Aging21, 1010–1015. 10.1007/s12603-017-0873-8
137
Guo B. Zhang M. Hao W. Wang Y. Zhang T. Liu C. (2023). Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl. Psychiatry13:5. 10.1038/s41398-022-02297-y
138
Guo X. Tang P. Zhang X. Li R. (2023). Causal associations of circulating Helicobacter pylori antibodies with stroke and the mediating role of inflammation. Inflamm. Res. 72,1193–1202. 10.1007/s00011-023-01740-0
139
Gwinnutt J. M. Norton S. Hyrich K. L. Lunt M. Combe B. Rincheval N. et al . (2022). Exploring the disparity between inflammation and disability in the 10-year outcomes of people with rheumatoid arthritis. Rheumatology61, 4687–4701. 10.1093/rheumatology/keac137
140
Haehner A. Hummel T. Reichmann H. (2009). Olfactory dysfunction as a diagnostic marker for Parkinson's disease. Expert Rev. Neurother. 9, 1773–1779. 10.1586/ern.09.115
141
Hahad O. Lelieveld J. Birklein F. Lieb K. Daiber A. Münzel T. (2020). Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int. J. Mol. Sci. 21:4306. 10.3390/ijms21124306
142
Hajj-Ali R. A. Major J. Langford C. Hoffman G. S. Clark T. Zhang L. et al . (2015). The interface of inflammation and subclinical atherosclerosis in granulomatosis with polyangiitis (Wegener's): a preliminary study. Transl. Res. 166, 366–374. 10.1016/j.trsl.2015.04.001
143
Han S. Wang Q. Song Y. Pang M. Ren C. Wang J. et al . (2023). Lithium ameliorates Niemann-Pick C1 disease phenotypes by impeding STING/SREBP2 activation. iScience26:106613. 10.1016/j.isci.2023.106613
144
Hardebo J. E. (1994). How cluster headache is explained as an intracavernous inflammatory process lesioning sympathetic fibers. Headache34, 125–131. 10.1111/j.1526-4610.1994.hed3403125.x
145
Harita M. Miwa T. Shiga H. Yamada K. Sugiyama E. Okabe Y. et al . (2019). Association of olfactory impairment with indexes of sarcopenia and frailty in community-dwelling older adults. Geriatr. Gerontol. Int.19, 384–391. 10.1111/ggi.13621
146
Harris S. Gilbert M. Beasant L. Linney C. Broughton J. Crawley E. (2017). A qualitative investigation of eating difficulties in adolescents with chronic fatigue syndrome/myalgic encephalomyelitis. Clin. Child Psychol. Psychiatry22, 128–139. 10.1177/1359104516646813
147
Hasan Balcioglu Y. Kirlioglu Balcioglu S. S. Oncu F. Turkcan A. Coskun Yorulmaz A. (2022). Impulsive and aggressive traits and increased peripheral inflammatory status as psychobiological substrates of homicide behavior in schizophrenia. Euro. J. Psychiatry36, 207–214. 10.1016/j.ejpsy.2022.01.004
148
Hawkes C. H. Shephard B. C. Geddes J. F. Body G. D. Martin J. E. (1998). Olfactory disorder in motor neuron disease. Exp. Neurol. 150, 248–253. 10.1006/exnr.1997.6773
149
He Y. S. Cao F. Musonye H. A. Xu Y. Q. Gao Z. X. Ge M. et al . (2024). Serum albumin mediates the associations between heavy metals and two novel systemic inflammation indexes among U.S. adults. Ecotoxicol. Environ. Safety270:115863. 10.1016/j.ecoenv.2023.115863
150
Heger E. Rubinstein G. Braun L. T. Zopp S. Honegger J. Seidensticker M. et al . (2021). Chemosensory dysfunction in Cushing's syndrome. Endocrine73, 674–681. 10.1007/s12020-021-02707-z
151
Henkin R. I. Schmidt L. Velicu I. (2013). Interleukin 6 in hyposmia. JAMA Otolaryngol. Head Neck Surg. 139, 728–734. 10.1001/jamaoto.2013.3392
152
Hirota R. Nakamura H. Bhatti S. A. Ngatu N. R. Muzembo B. A. Dumavibhat N. et al . (2012). Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice. Inhal. Toxicol. 24, 373–381. 10.3109/08958378.2012.675528
153
Hoenen M. Wolf O. T. Pause B. M. (2017). The impact of stress on odor perception. Perception46, 366–376. 10.1177/0301006616688707
154
Hokari M. Uchida K. Shimbo D. Gekka M. Asaoka K. Itamoto K. (2020). Acute systematic inflammatory response syndrome and serum biomarkers predict outcomes after subarachnoid hemorrhage. J. Clin. Neurosci. 78, 108–113. 10.1016/j.jocn.2020.05.055
155
Holbrook E. H. Puram S. V. See R. B. Tripp A. G. Nair D. G. (2019). Induction of smell through transethmoid electrical stimulation of the olfactory bulb. Int. Forum Allergy Rhinol. 9, 158–164. 10.1002/alr.22237
156
Hori H. Kim Y. (2019). Inflammation and post-traumatic stress disorder. Psychiatry Clin. Neurosci. 73, 143–153. 10.1111/pcn.12820
157
Hudz N. Kobylinska L. Pokajewicz K. Horčinová Sedláčkov,á V. Fedin R. Voloshyn M. et al . (2023). Mentha piperita: essential oil and extracts, their biological activities, and perspectives on the development of new medicinal and cosmetic products. Molecules28:7444. 10.3390/molecules28217444
158
Huggard D. Kelly L. Ryan E. McGrane F. Lagan N. Roche E. et al . (2020). Increased systemic inflammation in children with Down syndrome. Cytokine127:154938. 10.1016/j.cyto.2019.154938
159
Huxtable A. G. Vinit S. Windelborn J. A. Crader S. M. Guenther C. H. Watters J. J. et al . (2011). Systemic inflammation impairs respiratory chemoreflexes and plasticity. Respir. Physiol. Neurobiol. 178, 482–489. 10.1016/j.resp.2011.06.017
160
Iaccarino L. Shoenfeld N. Rampudda M. Zen M. Gatto M. Ghirardello A. et al . (2014). The olfactory function is impaired in patients with idiopathic inflammatory myopathies. Immunol. Res.60, 247–252. 10.1007/s12026-014-8581-5
161
Iannaccone A. Mykytyn K. Persico A. M. Searby C. C. Baldi A. Jablonski M. M. et al . (2005). Clinical evidence of decreased olfaction in Bardet-Biedl syndrome caused by a deletion in the BBS4 gene. Am. J. Med. Genet. A.132, 343–346. 10.1002/ajmg.a.30512
162
Iannucci V. Bruscolini A. Iannella G. Visioli G. Alisi L. Salducci M. et al . (2024). Olfactory dysfunction and glaucoma. Biomedicines12:1002. 10.3390/biomedicines12051002
163
Imamura F. Hasegawa-Ishii S. (2016). Environmental toxicants-induced immune responses in the olfactory mucosa. Front. Immunol. 7:475. 10.3389/fimmu.2016.00475
164
Iranzo A. Marrero-González P. Serradell M. Gaig C. Santamaria J. Vilaseca I. (2021). Significance of hyposmia in isolated REM sleep behavior disorder. J. Neurol. 268, 963–966. 10.1007/s00415-020-10229-3
165
Jiménez-Jiménez F. J. Alonso-Navarro H. García-Martín E. Agúndez J. A. G. (2023). Inflammatory factors and restless legs syndrome: a systematic review and meta-analysis. Sleep Med. Rev. 68:101744. 10.1016/j.smrv.2022.101744
166
Juergens U. R. Dethlefsen U. Steinkamp G. Gillissen A. Repges R. Vetter H. (2003). Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir. Med. 97, 250–256. 10.1053/rmed.2003.1432
167
Juncos J. L. Lazarus J. T. Rohr J. Allen E. G. Shubeck L. Hamilton D. et al . (2012). Olfactory dysfunction in fragile X tremor ataxia syndrome. Mov. Disord. 27, 1556–1559. 10.1002/mds.25043
168
Kamath V. Jiang K. Manning K. J. Mackin R. S. Walker K. A. Powell D. et al . (2024). Olfactory dysfunction and depression trajectories in community-dwelling older adults. J. Gerontol. A. Biol. Sci. Med. Sci.79:glad139. 10.1093/gerona/glad139
169
Kamath V. Leff B. (2019). Mortality risk in older adults: what the nose knows. Ann. Intern. Med. 170, 722–723. 10.7326/M19-1013
170
Kamath V. Moberg P. J. Calkins M. E. Borgmann-Winter K. Conroy C. G. Gur R. E. et al . (2012). An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis. Schizophr. Res. 138, 280–284. 10.1016/j.schres.2012.03.029
171
Kang D. W. Kim S. S. Park D. C. Kim S. H. Yeo S. G. (2021). Objective and measurable biomarkers in chronic subjective tinnitus. Int. J. Mol. Sci. 22:6619. 10.3390/ijms22126619
172
Kar T. Yildirim Y. Altundag A. Sonmez M. Kaya A. Colakoglu K. et al . (2015). The relationship between age-related macular degeneration and olfactory function. J. Neuro-degener. Dis.15, 219–224. 10.1159/000381216
173
Katayama N. Yoshida T. Nakashima T. Ito Y. Teranishi M. Iwase T. et al . (2023). Relationship between tinnitus and olfactory dysfunction: audiovisual, olfactory, and medical examinations. Front. Pub. Health11:1124404. 10.3389/fpubh.2023.1124404
174
Kay L. M. (2022). COVID-19 and olfactory dysfunction: a looming wave of dementia?J. Neurophysiol.128, 436–444. 10.1152/jn.00255.2022
175
Kaya K. S. Akpinar M. Turk B. Seyhun N. Cankaya M. Coskun B. U. (2020). Olfactory function in patients with obstructive sleep apnea using positive airway pressure. Ear, Nose Throat J.99, 239–244. 10.1177/0145561319878949
176
Kaya-Sezginer E. Gur S. (2020). The inflammation network in the pathogenesis of erectile dysfunction: attractive potential therapeutic targets. Curr. Pharm. Des. 26, 3955–3972. 10.2174/1381612826666200424161018
177
Kazour F. Richa S. Char C. A. Atanasova B. El-Hage W. (2020). Olfactory memory in depression: state and trait differences between bipolar and unipolar disorders. Brain Sci.10:189. 10.3390/brainsci10030189
178
Kebir S. Hattingen E. Niessen M. Rauschenbach L. Fimmers R. Hummel T. et al . (2020). Olfactory function as an independent prognostic factor in glioblastoma. Neurology94, e529–e537. 10.1212/WNL.0000000000008744
179
Kern J. K. Geier D. A. Sykes L. K. Geier M. R. (2016). Relevance of neuroinflammation and encephalitis in autism. Front. Cell. Neurosci. 9:519. 10.3389/fncel.2015.00519
180
Khurshid K. Crow A. J. D. Rupert P. E. Minniti N. L. Carswell M. A. Mechanic-Hamilton D. J. et al . (2019). A quantitative meta-analysis of olfactory dysfunction in epilepsy. Neuropsychol. Rev. 29, 328–337. 10.1007/s11065-019-09406-7
181
Kim R. Jun J. S. Kim H. J. Jung K. Y. Shin Y. W. Yang T. W. et al . (2019). Peripheral blood inflammatory cytokines in idiopathic REM sleep behavior disorder. Mov. Disord. 34, 1739–1744. 10.1002/mds.27841
182
Kinnaird E. Stewart C. Tchanturia K. (2020). The relationship of autistic traits to taste and olfactory processing in anorexia nervosa. Mol. Autism11:25. 10.1186/s13229-020-00331-8
183
Kirgezen T. Yücetaş U. Server E. A. Övünç O. Yigit Ö. (2021). Possible effects of low testosterone levels on olfactory function in males. Braz. J. Otorhinolaryngol. 87, 702–710. 10.1016/j.bjorl.2020.03.001
184
Klimek L. Eggers G. (1997). Olfactory dysfunction in allergic rhinitis is related to nasal eosinophilic inflammation. J. Allergy Clin. Immunol. 100, 158–164. 10.1016/s0091-6749(97)70218-5
185
Kofod J. Elfving B. Nielsen E. H. Mors O. Köhler-Forsberg O. (2022). Depression and inflammation: correlation between changes in inflammatory markers with antidepressant response and long-term prognosis. Eur. Neuropsychopharmacol. 54, 116–125. 10.1016/j.euroneuro.2021.09.006
186
Kohli P. Soler Z. M. Nguyen S. A. Muus J. S. Schlosser R. J. (2016). The association between olfaction and depression: a systematic review. Chem. Senses41, 479–486. 10.1093/chemse/bjw061
187
Kollndorfer K. Jakab A. Mueller C. A. Trattnig S. Schöpf V. (2015). Effects of chronic peripheral olfactory loss on functional brain networks. Neuroscience310, 589–599. 10.1016/j.neuroscience.2015.09.045
188
Komine O. Yamanaka K. (2015). Neuroinflammation in motor neuron disease. Nagoya J. Med. Sci. 77, 537–549.
189
Kommoss K. S. Enk A. Heikenwälder M. Waisman A. Karbach S. Wild J. (2023). Cardiovascular comorbidity in psoriasis - psoriatic inflammation is more than just skin deep. J. Dtsch. Dermatol. Ges. 21, 718–725. 10.1111/ddg.15071
190
Koneczny I. Herbst R. (2019). Myasthenia gravis: Pathogenic effects of autoantibodies on neuromuscular architecture. Cells8:671. 10.3390/cells8070671
191
Konstantinidis I. Triaridis S. Triaridis A. Petropoulos I. Karagiannidis K. Kontzoglou G. (2005). How do children with adenoid hypertrophy smell and taste? Clinical assessment of olfactory function pre- and post-adenoidectomy. Int. J. Pediatr. Otorhinolaryngol. 69, 1343–1349. 10.1016/j.ijporl.2005.03.022
192
Kopala L. Clark C. (1990). Implications of olfactory agnosia for understanding sex differences in schizophrenia. Schizophr. Bull. 16, 255–261. 10.1093/schbul/16.2.255
193
Kopala L. C. Clark C. Hurwitz T. (1993). Olfactory deficits in neuroleptic naive patients with schizophrenia. Schizophr. Res. 8, 245–250. 10.1016/0920-9964(93)90022-B
194
Koseoglu S. B. Koseoglu S. Deveer R. Derin S. Kececioglu M. Sahan M. (2016). Impaired olfactory function in patients with polycystic ovary syndrome. Kaohsiung J. Med. Sci.32, 313–316. 10.1016/j.kjms.2016.04.015
195
Kovalová M. Gottfriedová N. Mrázková E. Janout V. Janoutová J. (2024). Cognitive impairment, neurodegenerative disorders, and olfactory impairment: a literature review. Polish Otolaryngol. 78, 1–17. 10.5604/01.3001.0053.6158
196
Kronenbuerger M. Belenghi P. Ilgner J. Freiherr J. Hummel T. Neuner I. (2018). Olfactory functioning in adults with Tourette syndrome. PLoS ONE13:e0197598. 10.1371/journal.pone.0197598
197
Ku C. M. Lin J. Y. (2016). Farnesol, a sesquiterpene alcohol in essential oils, ameliorates serum allergic antibody titres and lipid profiles in ovalbumin-challenged mice. Allergol Immunopathol.44, 149–159. 10.1016/j.aller.2015.05.009
198
Kubiak K. Szmidt M. K. Kaluza J. Zylka A. Sicinska E. (2023). Do dietary supplements affect inflammation, oxidative stress, and antioxidant status in adults with hypothyroidism or Hashimoto's disease? A systematic review of controlled trials. Antioxidants12:1798. 10.3390/antiox12101798
199
Kümpfel T. Giglhuber K. Aktas O. Ayzenberg I. Bellmann-Strobl J. Häußler V. et al . (2024). Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD). - revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: Attack therapy and long-term management. J. Neurol. 271, 141–176. 10.1007/s00415-023-11910-z
200
Kursun O. Yemisci M. van den Maagdenberg A. M. J. M. Karatas H. (2021). Migraine and neuroinflammation: the inflammasome perspective. J. Headache Pain22:55. 10.1186/s10194-021-01271-1
201
LaFever B. J. Imamura F. (2022). Effects of nasal inflammation on the olfactory bulb. J. Neuroinflamm. 19:294. 10.1186/s12974-022-02657-x
202
Lambertsen K. L. Finsen B. Clausen B. H. (2019). Post-stroke inflammation-target or tool for therapy?Acta Neuropathol. 137, 693–714. 10.1007/s00401-018-1930-z
203
Landis B. N. Vodicka J. Hummel T. (2010). Olfactory dysfunction following herpetic meningoencephalitis. J. Neurol.257, 439–443. 10.1007/s00415-009-5344-7
204
Las Casas Lima M. H. Cavalcante A. L. B. Leão S. C. (2022). Pathophysiological relationship between COVID-19 and olfactory dysfunction: a systematic review. Braz. J. Otorhinolaryngol. 88, 794–802. 10.1016/j.bjorl.2021.04.001
205
Laudien M. Lamprecht P. Hedderich J. Holle J. Ambrosch P. (2009). Olfactory dysfunction in Wegener's granulomatosis. Rhinology47, 254–259. 10.4193/Rhin08.159
206
Laudisio A. Navarini L. Margiotta D. P. E. Fontana D. O. Chiarella I. Spitaleri D. et al . (2019). The association of olfactory dysfunction, frailty, and mortality is mediated by inflammation: results from the InCHIANTI Study. J. Immunol. Res. 2019:3128231. 10.1155/2019/3128231
207
Lazarini F. Lannuzel A. Cabi,é A. Michel V. Madec Y. Chaumont H. et al . (2022). Olfactory outcomes in Zika virus-associated Guillain-Barré syndrome. Eur. J. Neurol. 29, 2823–2831. 10.1111/ene.15444
208
Leclercq S. de Timary P. Delzenne N. M. Stärkel P. (2017). The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl. Psychiatry7:e1048. 10.1038/tp.2017.15
209
Lee K. Choi I. H. Lee S. H. Kim T. H. (2019). Association between subjective olfactory dysfunction and female hormone-related factors in South Korea. Sci. Rep.9:20007. 10.1038/s41598-019-56565-x
210
Leon M. Woo C. C. (2022). Olfactory loss is a predisposing factor for depression, while olfactory enrichment is an effective treatment for depression. Front. Neurosci. 16:1013363. 10.3389/fnins.2022.1013363
211
Leonardo S. Fregni F. (2023). Association of inflammation and cognition in the elderly: a systematic review and meta-analysis. Front. Aging Neurosci. 15:1069439. 10.3389/fnagi.2023.1069439
212
Leon-Sarmiento F. E. Bayona E. A. Bayona-Prieto J. Osman A. Doty R. L. (2012). Profound olfactory dysfunction in myasthenia gravis. PLoS ONE7:e45544. 10.1371/journal.pone.0045544
213
Leon-Sarmiento F. E. Bayona E. A. Rizzo-Sierra C. V. Garavito A. Campos M. F. Doty R. (2014). Olfactory dysfunction in Chagas' disease. Neurology 82 (Suppl. 10), P3–027. 10.1212/WNL.82.10_supplement.P3.027
214
Lewis C. R. Talboom J. S. De Both M. D. Schmidt A. M. Naymik M. A. Håberg A. K. et al . (2021). Smoking is associated with impaired verbal learning and memory performance in women more than men. Sci. Rep. 11:10248. 10.1038/s41598-021-88923-z
215
Li F. Wang Y. Zheng K. (2023). Microglial mitophagy integrates the microbiota-gut-brain axis to restrain neuroinflammation during neurotropic herpesvirus infection. Autophagy19, 734–736. 10.1080/15548627.2022.2102309
216
Liao C. P. Booker R. C. Brosseau J. P. Chen Z. Mo J. Tchegnon E. et al . (2018). Contributions of inflammation and tumor microenvironment to neurofibroma tumorigenesis. J. Clin. Invest.128, 2848–2861. 10.1172/JCI99424
217
Likuni N. Lam Q. L. Lu L. Matarese G. La Cava A. (2008). Leptin and inflammation. Curr. Immunol. Rev.4, 70–79. 10.2174/157339508784325046
218
Lin L.-J. Li K.-Y. (2022). Comparing the effects of olfactory-based sensory 223. stimulation and board game training on cognition, emotion, and blood biomarkers among individuals with dementia: a pilot randomized controlled trial. Front. Psychol.13:1003325. 10.3389/fpsyg.2022.1003325
219
Liu B. Luo Z. Chen H. (2019). Relationship between poor olfaction and mortality. Ann. Intern. Med. 171:526. 10.7326/L19-0468
220
Lontchi-Yimagou E. Sobngwi E. Matsha T. E. Kengne A. P. (2013). Diabetes mellitus and inflammation. Curr. Diab. Rep. 13, 435–444. 10.1007/s11892-013-0375-y
221
López González I. Garcia-Esparcia P. Llorens F. Ferrer I. (2016). Genetic and transcriptomic profiles of inflammation in neurodegenerative diseases: Alzheimer, Parkinson, Creutzfeldt-Jakob and tauopathies. Int. J. Mol. Sci. 17:206. 10.3390/ijms17020206
222
Lötsch J. Ultsch A. Eckhardt M. Huart C. Rombaux P. Hummel T. (2016). Brain lesion-pattern analysis in patients with olfactory dysfunctions following head trauma. Neuroimage Clin. 11, 99–105. 10.1016/j.nicl.2016.01.011
223
Lu K. (2023). Cellular pathogenesis of hepatic encephalopathy: an update. Biomolecules13:396. 10.3390/biom13020396
224
Lu R. Huang R. Li K. Zhang X. Yang H. Quan Y. et al . (2014). The influence of benign essential blepharospasm on dry eye disease and ocular inflammation. Am. J. Ophthalmol. 157, 591–597. 10.1016/j.ajo.2013.11.014
225
Lundberg I. E. Fujimoto M. Vencovsky J. Aggarwal R. Holmqvist M. Christopher-Stine L. et al . (2021). Idiopathic inflammatory myopathies. Nature Rev. Dis. Prim.7:86. 10.1038/s41572-021-00321-x
226
Luzzi S. Snowden J. S. Neary D. Coccia M. Provinciali L. Lambon Ralph M. A. (2007). Distinct patterns of olfactory impairment in Alzheimer's disease, semantic dementia, frontotemporal dementia, and corticobasal degeneration. Neuropsychologia45, 1823–1831. 10.1016/j.neuropsychologia.2006.12.008
227
Maas C. López-Lera A. (2019). Hereditary angioedema: Insights into inflammation and allergy. Mol. Immunol.112, 378–386. 10.1016/j.molimm.2019.06.017
228
Mahmut M. K. Stevenson R. J. (2012). Olfactory abilities and psychopathy: Higher psychopathy scores are associated with poorer odor discrimination and identification. Chemosens. Percept.5, 300–307. 10.1007/s12078-012-9135-7
229
Maier A. Heinen-Ludwig L. Güntürkün O. Hurlemann R. Scheele D. (2020). Childhood maltreatment alters the neural processing of chemosensory stress signals. Front. Psychiatry11:783. 10.3389/fpsyt.2020.00783
230
Makhlouf M. Souza D. G. Kurian S. Bellaver B. Ellis H. Kuboki A. et al . (2024). Short-term consumption of highly processed diets varying in macronutrient content impair the sense of smell and brain metabolism in mice. Mol. Metab. 79:101837. 10.1016/j.molmet.2023.101837
231
Maki P. M. (2015). Verbal memory and menopause. Maturitas82, 288–290. 10.1016/j.maturitas.2015.07.023
232
Malutan A. M. Dan M. Nicolae C. Carmen M. (2014). Proinflammatory and anti-inflammatory cytokine changes related to menopause. Menopause Rev. 13, 162–168. 10.5114/pm.2014.43818
233
Manara R. Salvalaggio A. Favaro A. Palumbo V. Citton V. Elefante A. et al . (2014). Brain changes in Kallmann syndrome. Am. J. Neuroradiol. 35, 1700–1706. 10.3174/ajnr.A3946
234
Marazziti D. Palermo S. Arone A. Massa L. Parra E. Simoncini M. et al . (2023). Obsessive-compulsive disorder, PANDAS, and Tourette syndrome: immuno-inflammatory disorders. Adv. Exp. Med. Biol. 1411, 275–300. 10.1007/978-981-19-7376-5_13
235
Marek M. Linnepe S. Klein C. Hummel T. Paus S. (2018). High prevalence of olfactory dysfunction in cervical dystonia. Parkinsonism Relat. Disord. 53, 33–36. 10.1016/j.parkreldis.2018.04.028
236
Masala C. Loy F. Pinna I. Manis N. A. Ercoli T. Solla P. (2024). Olfactory function as a potential predictor of cognitive impairment in men and women. Biology13:503. 10.3390/biology13070503
237
Masala C. Solla P. Loy F. (2023). Gender-related differences in the correlation between odor threshold, discrimination, identification, and cognitive reserve index in healthy subjects. Biology12:586. 10.3390/biology12040586
238
Masaoka Y. Kawamura M. Takeda A. Kobayakawa M. Kuroda T. Kasai H. et al . (2011). Impairment of odor recognition and odor-induced emotions in type 1 myotonic dystrophy. Neurosci. Lett. 503, 163–166. 10.1016/j.neulet.2011.08.006
239
Masehi-Lano J. J. Deyssenroth M. Jacobson S. W. Jacobson J. L. Molteno C. D. Dodge N. C. et al . (2023). Alterations in placental inflammation-related gene expression partially mediate the effects of prenatal alcohol consumption on maternal iron homeostasis. Nutrients15:4105. 10.3390/nu15194105
240
Matsui T. Arai H. Nakajo M. Maruyama M. Ebihara S. Sasaki H. et al . (2003). Role of chronic sinusitis in cognitive functioning in the elderly. J. Am. Geriatr. Soc. 51, 1818–1819. 10.1046/j.1532-5415.2003.51572_5.x
241
Matsunaga M. Bai Y. Yamakawa K. Toyama A. Kashiwagi M. Fukuda K. et al . (2013). Brain-immune interaction accompanying odor-evoked autobiographic memory. PLoS ONE8:e72523. 10.1371/journal.pone.0072523
242
Maurage P. Rombaux P. de Timary P. (2014). Olfaction in alcohol-dependence: a neglected yet promising research field. Front. Psychol. 4:1007. 10.3389/fpsyg.2013.01007
243
McCombe P. A. Henderson R. D. (2011). The role of immune and inflammatory mechanisms in ALS. Curr. Mol. Med. 11, 246–254. 10.2174/156652411795243450
244
McConnell R. J. Menendez C. E. Smith F. R. Henkin R. I. Rivlin R. S. (1975). Defects of taste and smell in patients with hypothyroidism. Am. J. Med.59, 354–364. 10.1016/0002-9343(75)90394-0
245
McElvaney O. J. Wade P. Murphy M. Reeves E. P. McElvaney N. G. (2019). Targeting airway inflammation in cystic fibrosis. Expert Rev. Respir. Med. 13, 1041–1055. 10.1080/17476348.2019.1666715
246
McInnes K. Friesen C. L. MacKenzie D. E. Westwood D. A. Boe S. G. (2017). Mild traumatic brain injury (mTBI) and chronic cognitive impairment: a scoping review. PLoS ONE12:e0174847. 10.1371/journal.pone.0174847
247
McKee A. C. Daneshvar D. H. Alvarez V. E. Stein T. D. (2014). The neuropathology of sport. Acta Neuropathol. 127, 29–51. 10.1007/s00401-013-1230-6
248
McLaren A. M. R. Kawaja M. D. (2024). Olfactory dysfunction and Alzheimer's disease: a review. J. Alzheimers Dis. 99, 811–827. 10.3233/JAD-231377
249
McNeill A. Duran R. Proukakis C. Bras J. Hughes D. Mehta A. et al . (2012). Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Mov. Disord. 27, 526–532. 10.1002/mds.24945
250
Melluso A. Secondulfo F. Capolongo G. Capasso G. Zacchia M. (2023). Bardet-Biedl syndrome: current perspectives and clinical outlook. Ther. Clin. Risk Manag. 19, 115–132. 10.2147/TCRM.S338653
251
Michalovicz L. T. Kelly K. A. Sullivan K. O'Callaghan J. P. (2020). Acetylcholinesterase inhibitor exposures as an initiating factor in the development of Gulf War Illness, a chronic neuroimmune disorder in deployed veterans. Neuropharmacology171:108073. 10.1016/j.neuropharm.2020.108073
252
Miller J. E. Liu C. M. Zemanick E. T. Woods J. C. Goss C. H. Taylor-Cousar J. L. et al . (2023). Olfactory loss in people with cystic fibrosis: community perceptions and impact. J. Cys. Fibros. 10.1016/j.jcf.2023.11.006. [Epub ahead of print].
253
Mishra S. Karan K. Nag D. Sengupta P. (2016). Adult onset Niemann–Pick type C disease: two different presentations. Neurol. India64, 1044–1047. 10.4103/0028-3886.190242
254
Misiak B. Bartoli F. Carr,à G. Stańczykiewicz B. Gładka A. Frydecka D. et al . (2021). Immune-inflammatory markers and psychosis risk: a systematic review and meta-analysis. Psychoneuroendocrinology127:105200. 10.1016/j.psyneuen.2021.105200
255
Mohamad N. V. Wong S. K. Wan Hasan W. N. Jolly J. J. Nur-Farhana M. F. Ima-Nirwana S. et al . (2019). The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male22, 129–140. 10.1080/13685538.2018.1482487
256
Mohamed S. Emmanuel N. Foden N. (2019). Nasal obstruction: a common presentation in primary care. Br. J. Gen. Pract. 69, 628–629. 10.3399/bjgp19X707057
257
Müller N. (2018). Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr. Bull. 44, 973–982. 10.1093/schbul/sby024
258
Murphy C. Dalton P. Boateng K. Hunter S. Silberman P. Trachtman J. et al . (2024). Integrating the patient's voice into the research agenda for treatment of chemosensory disorders. Chem. Senses49:bjae020. 10.1093/chemse/bjae020
259
Muruzheva Z. M. Ivleva I. S. Traktirov D. S. Zubov A. S. Karpenko M. N. (2022). The relationship between serum interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-α levels and clinical features in essential tremor. Int. J. Neurosci. 132, 1143–1149. 10.1080/00207454.2020.1865952
260
Muscaritoli M. Imbimbo G. Jager-Wittenaar H. Cederholm T. Rothenberg E. di Girolamo F. G. et al . (2023). Disease-related malnutrition with inflammation and cachexia. Clin. Nutr.42, 1475–1479. 10.1016/j.clnu.2023.05.013
261
Nair J. R. Moots R. J. (2017). Behçet's disease. Clin. Med.17, 71–77. 10.7861/clinmedicine.17-1-71
262
Nakashima T. Katayama N. Sugiura S. Teranishi M. Suzuki H. Hirabayashi M. et al . (2019). Olfactory function in persons with cerebral palsy. J. Policy Pract. Intellect. Disabil. 16, 217–222. 10.1111/jppi.12284
263
Nasserie T. Hittle M. Goodman S. N. (2021). Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: a systematic review. JAMA Netw. Open4:e2111417. 10.1001/jamanetworkopen.2021.11417
264
Numan M. S. Amiable N. Brown J. P. Michou L. (2015). Paget's disease of bone: an osteoimmunological disorder?Drug Des. Devel. Ther. 9, 4695–4707. 10.2147/DDDT.S88845
265
Nunes J. P. S. Roda V. M. P. Andrieux P. Kalil J. Chevillard C. Cunha-Neto E. (2023). Inflammation and mitochondria in the pathogenesis of chronic Chagas disease cardiomyopathy. Exp. Biol. Med. 248, 2062–2071. 10.1177/15353702231220658
266
Oleszkiewicz A. Abriat A. Doelz G. Azema E. Hummel T. (2021). Beyond olfaction: Beneficial effects of olfactory training extend to aging-related cognitive decline. Behav. Neurosci.135, 732–740. 10.1037/bne0000478
267
Oleszkiewicz A. Bottesi L. Pieniak M. Fujita S. Krasteva N. Nelles G. et al . (2022). Olfactory training with aromastics: olfactory and cognitive effects. Head Neck Surg.279, 225–232. 10.1007/s00405-021-06810-9
268
O'Shea B. Q. Demakakos P. Cadar D. Kobayashi L. C. (2021). Adverse childhood experiences and rate of memory decline from mid to later life: evidence from the English longitudinal study of ageing. Am. J. Epidemiol. 190, 1294–1305. 10.1093/aje/kwab019
269
Ottaviano G. Cantone E. D'Errico A. Salvalaggio A. Citton V. Scarpa B. et al . (2015). Sniffin' Sticks and olfactory system imaging in patients with Kallmann syndrome. Int. Forum Allergy Rhinol. 5, 855–861. 10.1002/alr.21550
270
Pajares M. I. Rojo A. Manda G. Boscá L. Cuadrado A. (2020). Inflammation in Parkinson's disease: mechanisms and therapeutic implications. Cells9:1687. 10.3390/cells9071687
271
Panfili E. Mondanelli G. Orabona C. Belladonna M. L. Gargaro M. Fallarino F. et al . (2021). Novel mutations in the WFS1 gene are associated with Wolfram syndrome and systemic inflammation. Hum. Mol. Genet. 30, 265–276. 10.1093/hmg/ddab040
272
Pang N. Y. Song H. J. J. Tan B. K. J. Tan J. X. Chen A. S. R. See A. et al . (2022). Association of olfactory impairment with all-cause mortality: a systematic review and meta-analysis. JAMA Otolaryngol. Head Neck Surg. 148, 436–445. 10.1001/jamaoto.2022.0263
273
Pang Y. Li Y. Zhang Y. Wang H. Lang J. Han L. et al . (2022). Effects of inflammation and oxidative stress on postoperative delirium in cardiac surgery. Front. Cardiovasc. Med. 9:1049600. 10.3389/fcvm.2022.1049600
274
Pascual B. Funk Q. Zanotti-Fregonara P. Cykowski M. D. Veronese M. Rockers E. et al . (2021). Neuroinflammation is highest in areas of disease progression in semantic dementia. Brain144, 1565–1575. 10.1093/brain/awab057
275
Paton M. C. B. Finch-Edmondson M. Dale R. C. Fahey M. C. Nold-Petry C. A. Nold M. F. et al . (2022). Persistent inflammation in cerebral palsy: pathogenic mediator or comorbidity? A scoping review. J. Clin. Med. 11:7368. 10.3390/jcm11247368
276
Patrick D. M. Van Beusecum J. P. Kirabo A. (2021). The role of inflammation in hypertension: novel concepts. Curr. Opin. Physiol. 19, 92–98. 10.1016/j.cophys.2020.09.016
277
Peng M. Potterton H. Chu J. T. W. Glue P. (2021). Olfactory shifts linked to postpartum depression. Sci. Rep.11:14947. 10.1038/s41598-021-94556-z
278
Perricone C. Agmon-Levin N. Shoenfeld N. de Carolis C. Guarino M. D. Gigliucci G. et al . (2011). Evidence of impaired sense of smell in hereditary angioedema. Allergy66, 149–154. 10.1111/j.1398-9995.2010.02453.x
279
Petagna L. Antonelli A. Ganini C. Bellato V. Campanelli M. Divizia A. et al . (2020). Pathophysiology of Crohn's disease inflammation and recurrence. Biol. Direct. 15:23. 10.1186/s13062-020-00280-5
280
Peter M. G. Darki F. Thunell E. Mårtensson G. Postma E. M. Boesveldt S. et al . (2023). Lifelong olfactory deprivation-dependent cortical reorganization restricted to orbitofrontal cortex. Hum. Brain Mapp.44, 6459–6470. 10.1002/hbm.26522
281
Peters J. M. Hummel T. Kratzsch T. Lötsch J. Skarke C. Frölich L. (2003). Olfactory function in mild cognitive impairment and Alzheimer's disease: an investigation using psychophysical and electrophysiological techniques. Am. J. Psychiatry160, 1995–2002. 10.1176/appi.ajp.160.11.1995
282
Pignataro A. Middei S. (2017). Trans-synaptic spread of amyloid-β in Alzheimer's disease: paths to β-amyloidosis. Neural Plast.2017:5281829. 10.1155/2017/5281829
283
Pina L. T. S. Ferro J. N. S. Rabelo T. K. Oliveira M. A. Scotti L. Scotti M. T. et al . (2019). Alcoholic monoterpenes found in essential oil of aromatic spices reduce allergic inflammation by the modulation of inflammatory cytokines. Nat. Prod. Res. 33, 1773–1777. 10.1080/14786419.2018.1434634
284
Pinto J. M. (2021). The specter of olfactory impairment: lessons about mortality in older US adults. JAMA Otolaryngol. Head Neck Surg. 147, 56–57. 10.1001/jamaoto.2020.3745
285
Pinto J. M. Wroblewski K. E. Kern D. W. Schumm L. P. McClintock M. K. (2014). Olfactory dysfunction predicts 5-year mortality in older adults. PLoS ONE9:e107541. 10.1371/journal.pone.0107541
286
Pitel A. L. Eustache F. Beaunieux H. (2014). Component processes of memory in alcoholism: pattern of compromise and neural substrates. Handb. Clin. Neurol. 125, 211–225. 10.1016/B978-0-444-62619-6.00013-6
287
Ponsen M. M. Stoffers D. Booij J. van Eck-Smit B. L. Wolters E. C. Berendse H. W. (2004). Idiopathic hyposmia as a preclinical sign of Parkinson's disease. Ann. Neurol. 56, 173–181. 10.1002/ana.20160
288
Postolache T. T. Wadhawan A. Can A. Lowry C. A. Woodbury M. Makkar H. et al . (2020). Inflammation in traumatic brain injury. J. Alzheimers. Dis. 74, 1–28. 10.3233/JAD-191150
289
Potter M. R. Chen J. H. Lobban N. S. Doty R. L. (2020). Olfactory dysfunction from acute upper respiratory infections: relationship to season of onset. Int. Forum Allergy Rhinol. 10, 706–712. 10.1002/alr.22551
290
Pries R. Jeschke S. Leichtle A. Bruchhage K. L. (2023). Modes of Action of 1,8-Cineol in Infections and Inflammation. Metabolites13:751. 10.3390/metabo13060751
291
Radke J. Meinhardt J. Aschman T. Chua R. L. Farztdinov V. Lukassen S. et al . (2024). Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early- and late-phase COVID-19. Nature Neurosci.27, 409–420. 10.1038/s41593-024-01573-y
292
Rahmati M. Yon D. K. Lee S. W. Soysal P. Koyanagi A. Jacob L. et al . (2023). New-onset neurodegenerative diseases as long-term sequelae of SARS-CoV-2 infection: a systematic review and meta-analysis. J. Med. Virol. 95, e28909. 10.1002/jmv.28909
293
Ramsey J. T. Shropshire B. C. Nagy T.R. Chambers K. D. Li Y. Korach K. S . Essential oils and health. Yale J. Biol. Med. (2020) 93:291.
294
Rana A. Musto A. E. (2018). The role of inflammation in the development of epilepsy. J. Neuroinflamm. 15:144. 10.1186/s12974-018-1192-7
295
Rao M. Wang X. Guo G. Wang L. Chen S. Yin P. et al . (2021). Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res. Cardiol. 116:55. 10.1007/s00395-021-00897-1
296
Rasmussen A. L. Popescu S. V. (2021). SARS-CoV-2 transmission without symptoms. Science371, 1206–1207. 10.1126/science.abf9569
297
Rayego-Mateos S. Rodrigues-Diez R. R. Fernandez-Fernandez B. Mora-Fernández C. Marchant V. Donate-Correa J. et al . (2023). Targeting inflammation to treat diabetic kidney disease: the road to 2Kidney Int. 103, 282–296. 10.1016/j.kint.2022.10.030
298
Renzetti S. van Thriel C. Lucchini R. G. Smith D. R. Peli M. Borgese L. et al . (2024). A multi-environmental source approach to explore associations between metals exposure and olfactory identification among school-age children residing in northern Italy. J. Expos. Sci. Environ. Epidemiol.34, 699–708. 10.1038/s41370-024-00687-6
299
Reuber M. Al-Din A. S. Baborie A. Chakrabarty A. (2001). New variant Creutzfeldt-Jakob disease presenting with loss of taste and smell. J. Neurol. Neurosurg. Psychiatr.71, 412–413. 10.1136/jnnp.71.3.412
300
Rhyou H. I. Bae W. Y. Nam Y. H. (2021). Association between olfactory function and asthma in adults. J. Asthma Allergy14, 309–316. 10.2147/JAA.S299796
301
Ribeiro J. C. Oliveiros B. Pereira P. António N. Hummel T. Paiva A. et al . (2016). Accelerated age-related olfactory decline among type 1 Usher patients. Sci. Rep. 6:28309. 10.1038/srep28309
302
Rivera D. G. Hernández I. Merino N. Luque Y. Álvarez A. Martín Y. et al . (2011). Mangifera indica L. extract (Vimang) and mangiferin reduce the airway inflammation and Th2 cytokines in murine model of allergic asthma. J. Pharm. Pharmacol. 63, 1336–1345. 10.1111/j.2042-7158.2011.01328.x
303
Roessner V. Bleich S. Banaschewski T. Rothenberger A. (2005). Olfactory deficits in anorexia nervosa. Eur. Arch. Psychiatry Clin. Neurosci. 255, 6–9. 10.1007/s00406-004-0525-y
304
Roh D. Lee D. H. Kim S. W. Kim S. W. Kim B. G. Kim D. H. et al . (2021). The association between olfactory dysfunction and cardiovascular disease and its risk factors in middle-aged and older adults. Sci. Rep.11:1248. 10.1038/s41598-020-80943-5
305
Royet J. P. Plailly J. Saive A. L. Veyrac A. Delon-Martin C. (2013). The impact of expertise in olfaction. Front. Psychol. 4:928. 10.3389/fpsyg.2013.00928
306
Rupp C. I. Fleischhacker W. W. Hausmann A. Mair D. Hinterhuber H. Kurz M. (2004). Olfactory functioning in patients with alcohol dependence: Impairments in odor judgements. Alcohol39, 514–519. 10.1093/alcalc/agh100
307
Rydbirk R. Østergaard O. Folke J. Hempel C. DellaValle B. Andresen T. L. et al . (2022). Brain proteome profiling implicates the complement and coagulation cascade in multiple system atrophy brain pathology. Cell. Mol. Life Sci. 79:336. 10.1007/s00018-022-04378-z
308
Salimi M. Nazari M. Shahsavar P. Dehghan S. Javan M. Mirnajafi-Zadeh J. et al . (2024). Olfactory bulb stimulation mitigates Alzheimer-like disease progression. bioRxiv.10.1101/2024.03.03.583116
309
Samanci B. Sahin E. Sen C. Samanci Y. Sezgin M. Emekli S. et al . (2021). Olfactory dysfunction in patients with cluster headache. Eur. Arch. Otorhinolaryngol. 278, 4361–4365. 10.1007/s00405-021-06738-0
310
Sartori A. C. Vance D. E. Slater L. Z. Crowe M. (2012). The impact of inflammation on cognitive function in older adults: Implications for healthcare practice and research. J. Neurosci. Nurs. 44, 206–217. 10.1097/JNN.0b013e3182527690
311
Schaie K. W. Willis S. L. Caskie G. I. (2004). The Seattle longitudinal study: relationship between personality and cognition. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 11, 304–324. 10.1080/13825580490511134
312
Schertel Cassiano L. Ribeiro A. P. Peres M. A. Lopez R. Fjaeldstad A. Marchini L. et al . (2023). Self-reported periodontitis association with impaired smell and taste: a multicenter survey. Oral Dis. 30, 1516–1524. 10.1111/odi.14601
313
Schiffman S. S. (2018). Influence of medications on taste and smell. World J. Otorhinolaryngol. Head Neck Surg. 4, 84–91. 10.1016/j.wjorl.2018.02.005
314
Schmidt F. Göktas O. Jarius S. Wildemann B. Ruprecht K. Paul F. et al . (2013). Olfactory dysfunction in patients with neuromyelitis optica. Mult. Scler. Int.2013, 654501. 10.1155/2013/654501
315
Schoenfeld N. Agmon-Levin N. Flitman-Katzevman I. Paran D. Katz B. S. Kivity S. et al . (2009). The sense of smell in systemic lupus erythematosus. Arthritis Rheum. 60, 1484–1487. 10.1002/art.24491
316
Schubert C. R. Carmichael L. L. Murphy C. Klein B. E. Klein R. Cruickshanks K. J. (2008). Olfaction and the 5-year incidence of cognitive impairment in an epidemiological study of older adults. J. Am. Geriatr. Soc. 56, 1517–1521. 10.1111/j.1532-5415.2008.01826.x
317
Schubert C. R. Cruickshanks K. J. Fischer M. E. Klein B. E. Klein R. Pinto A. A. (2015). Inflammatory and vascular markers and olfactory impairment in older adults. Age Ageing44, 878–882. 10.1093/ageing/afv075
318
Schubert C. R. Fischer M. E. Pinto A. A. Klein B. E. K. Klein R. Tweed T. S. et al . (2017). Sensory impairments and risk of mortality in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 72, 710–715. 10.1093/gerona/glw036
319
Scorr L. M. Kilic-Berkmen G. Sutcliffe D. J. Dinasarapu A. R. McKay J. L. Bagchi P. et al . (2024). Exploration of potential immune mechanisms in cervical dystonia. Parkinsonism Relat. Disord. 122:106036. 10.1016/j.parkreldis.2024.106036
320
Segura B. Baggio H. C. Solana E. Palacios E. M. Vendrell P. Bargalló N. et al . (2013). Neuroanatomical correlates of olfactory loss in normal aged subjects. Behav. Brain Res. 246, 148–153. 10.1016/j.bbr.2013.02.025
321
Serby M. Larson P. Kalkstein D. (1991). The nature and course of olfactory deficits in Alzheimer's disease. Am. J. Psychiatry148, 357–360. 10.1176/ajp.148.3.357
322
Seubert J. Kalpouzos G. Larsson M. Hummel T. Bäckman L. Laukka E. J. (2020). Temporolimbic cortical volume is associated with semantic odor memory performance in aging. Neuroimage211:116600. 10.1016/j.neuroimage.2020.116600
323
Shi A. Long Y. Ma Y. et al . (2023). Natural essential oils derived from herbal medicines: a promising therapy strategy for treating cognitive impairment. Front. Aging Neurosci. 15:1104269. 10.3389/fnagi.2023.1104269
324
Shi D. Das J. Das G. (2006). Inflammatory bowel disease requires the interplay between innate and adaptive immune signals. Cell Res.16, 70–74. 10.1038/sj.cr.7310009
325
Shibata H. Fujiwara R. Iwamoto M. Matsuoka H. Yokoyama M. M. (1991). Immunological and behavioral effects of fragrance in mice. Int. J. Neurosci. 57, 151–159. 10.3109/00207459109150355
326
Shields G. S. Doty D. Shields R. H. Gower G. Slavich G. M. Yonelinas A. P. (2017). Recent life stress exposure is associated with poorer long-term memory, working memory, and self-reported memory. Stress20, 598–607. 10.1080/10253890.2017.1380620
327
Shill H. A. Zhang N. Driver-Dunckley E. Mehta S. Adler C. H. Beach T. G. (2021). Olfaction in neuropathologically defined progressive supranuclear palsy. Mov. Disord. 36, 1700–1704. 10.1002/mds.28568
328
Siegel J. K. Kung S. Y. Wroblewski K. E. Kern D. W. McClintock M. K. Pinto J. M. (2021). Olfaction is associated with sexual motivation and satisfaction in older men and women. J. Sex. Med.18, 295–302. 10.1016/j.jsxm.2020.12.002
329
Sieper J. Poddubnyy D. (2017). Axial spondyloarthritis. Lancet390, 73–84. 10.1016/S0140-6736(16)31591-4
330
Simopoulos A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21, 495–505. 10.1080/07315724.2002.10719248
331
Sinclair A. J. Ball A. K. Burdon M. A. Clarke C. E. Stewart P. M. Curnow S. J. et al . (2008). Exploring the pathogenesis of IIH: an inflammatory perspective. J. Neuroimmunol. 201–202, 212–220. 10.1016/j.jneuroim.2008.06.029
332
Sobel N. Thomason M. E. Stappen I. Tanner C. M. Tetrud J. W. Bower J. M. et al . (2001). An impairment in sniffing contributes to the olfactory impairment in Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A.98, 4154–4159. 10.1073/pnas.071061598
333
Sobin C. Kiley-Brabeck K. Dale K. Monk S. H. Khuri J. Karayiorgou M. (2006). Olfactory disorder in children with 22q11 deletion syndrome. Pediatrics118, e697–e703. 10.1542/peds.2005-3114
334
Solla P. Masala C. Ercoli T. Frau C. Bagella C. Pinna I. et al . (2023). Olfactory impairment correlates with executive functions disorders and other specific cognitive dysfunctions in Parkinson's disease. Biology12:112. 10.3390/biology12010112
335
Sollai G. Melis M. Mastinu M. Paduano D. Chicco F. Magri S. et al . (2021). Olfactory function in patients with inflammatory bowel disease (IBD) is associated with their body mass index and polymorphism in the odor binding-protein (OBPIIa) gene. Nutrients13:703. 10.3390/nu13020703
336
Soysal P. Stubbs B. Lucato P. Luchini C. Solmi M. Peluso R. et al . (2016). Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res. Rev. 31, 1–8. 10.1016/j.arr.2016.08.006
337
Speth U. S. König D. Burg S. Gosau M. Friedrich R. E. (2023). Evaluation of the sense of taste and smell in patients with neurofibromatosis type 1. J. Stomatol. Oral Maxillofac. Surg.124:101271. 10.1016/j.jormas.2022.08.014
338
Spotten L. Corish C. Lorton C. Dhuibhir P. U. O'Donoghue N. O'Connor B. et al . (2016). Subjective taste and smell changes in treatment-naive people with solid tumours. Support. Care Cancer24, 3201–3208. 10.1007/s00520-016-3133-2
339
Stanciu A. E. Hurduc A. Stanciu M. M. Gherghe M. Gheorghe D. C. Prunoiu V. M. et al . (2023). Portrait of the inflammatory response to radioiodine therapy in female patients with differentiated thyroid cancer with/without type 2 diabetes mellitus. Cancers15:3793. 10.3390/cancers15153793
340
Steinbach S. Proft F. Schulze-Koops H. Hundt W. Heinrich P. Schulz S. et al . (2011). Gustatory and olfactory function in rheumatoid arthritis. Scand. J. Rheum.40, 169–177. 10.3109/03009742.2010.517547
341
Stern Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. Lancet Neurol. 11, 1006–1012. 10.1016/S1474-4422(12)70191-6
342
Stevenson R. J. Mahmut M. K. Horstmann A. Hummel T. (2020). The aetiology of olfactory dysfunction and its relationship to diet quality. Brain Sci.10:769. 10.3390/brainsci10110769
343
Suat B. Deniz Tuna E. Ozgur Y. Muhammet Y. Tevfik Fikret C. (2016). The effects of radioactive iodine therapy on olfactory function. Am. J. Rhinol. Allergy30, 206–210. 10.2500/ajra.2016.30.4384
344
Subramaniyan S. Terrando N. (2019). Neuroinflammation and perioperative neurocognitive disorders. Anesth. Analg. 128, 781–788. 10.1213/ANE.0000000000004053
345
Suh K. D. Kim S. M. Han D. H. Min H. J. Kim K. S. (2020). Olfactory function test for early diagnosis of vascular dementia. Korean J. Fam. Med. 41, 202–204. 10.4082/kjfm.18.0202
346
Takehara-Nishiuchi K. (2014). Entorhinal cortex and consolidated memory. Neurosci. Res. 84, 27–33. 10.1016/j.neures.2014.02.012
347
Tan W. Zou J. Yoshida S. Jiang B. Zhou Y. (2020). The role of inflammation in age-related macular degeneration. Int. J. Biol. Sci. 16, 2989–3001. 10.7150/ijbs.49890
348
Terrier C. Greco-Vuilloud J. Cavelius M. Thevenet M. Mandairon N. Didier A. et al . (2024). Long-term olfactory enrichment promotes non-olfactory cognition, noradrenergic plasticity and remodeling of brain functional connectivity in older mice. Neurobiol. Aging136, 133–156. 10.1016/j.neurobiolaging.2024.01.011
349
Thorstensen W. M. Oie M. R. Dahlslett S. B. Sue-Chu M. Steinsvag S. K. Helvik A. S. (2022). Olfaction in COPD. Rhinology60, 47–55. 10.4193/Rhin21.037
350
Trares K. Bhardwaj M. Perna L. Stocker H. Petrera A. Hauck S. M. et al . (2022). Association of the inflammation-related proteome with dementia development at older age: results from a large, prospective, population-based cohort study. Alzheimers. Res. Ther. 14:128. 10.1186/s13195-022-01063-y
351
Tristan Asensi M. Napoletano A. Sofi F. Dinu M. (2023). Low-grade inflammation and ultra-processed foods consumption: a review. Nutrients15:1546. 10.3390/nu15061546
352
Ueno-Iio T. Shibakura M. Yokota K. Aoe M. Hyoda T. Shinohata R. et al . (2014). Lavender essential oil inhalation suppresses allergic airway inflammation and mucous cell hyperplasia in a murine model of asthma. Life Sci.108, 109–115. 10.1016/j.lfs.2014.05.018
353
Upadhyay U. D. Holbrook E. H. (2004). Olfactory loss as a result of toxic exposure. Otolaryngol. Clin. North Am. 37, 1185–1207. 10.1016/j.otc.2004.05.003
354
Üstün Bezgin S. Çakabay T. Irak K. Koçyigit M. Serin Keskinege B. Cevizci R. et al . (2017). Association of Helicobacter pylori infection with olfactory function using smell identification screening test. Eur. Arch. Otorhinolaryngol.274, 3403–3405. 10.1007/s00405-017-4656-y
355
Vaira L. A. Hopkins C. Petrocelli M. Lechien J. R. Chiesa-Estomba C. M. Salzano G. et al . (2020). Smell and taste recovery in coronavirus disease 2019 patients: a 60-day objective and prospective study. J. Laryngol. Otol. 134, 703–709. 10.1017/S0022215120001826
356
Valadão P. A. C. Santos K. B. S. Ferreira Vieira T. H. Macedo E Cordeiro T. Teixeira A. L. Guatimosim C. et al . (2020). Inflammation in Huntington's disease: a few new twists on an old tale. J. Neuroimmunol. 348:577380. 10.1016/j.jneuroim.2020.577380
357
Valizadeh P. Momtazmanesh S. Plazzi G. Rezaei N. (2024). Connecting the dots: an updated review of the role of autoimmunity in narcolepsy and emerging immunotherapeutic approaches. Sleep Med. 113, 378–396. 10.1016/j.sleep.2023.12.005
358
Van Bogart K. Engeland C. G. Sliwinski M. J. Harrington K. D. Knight E. L. Zhaoyang R. et al . (2022). The association between loneliness and inflammation: findings from an older adult sample. Front. Behav. Neurosci. 15:801746. 10.3389/fnbeh.2021.801746
359
Van Dijck A. Barbosa S. Bermudez-Martin P. Khalfallah O. Gilet C. Martinuzzi E. et al . (2020). Reduced serum levels of pro-inflammatory chemokines in fragile X syndrome. BMC Neurol. 20:138. 10.1186/s12883-020-01715-2
360
Van Regemorter V. Dollase J. Coulie R. Stouffs A. Dieu A. de Saint-Hubert M. et al . (2022). Olfactory dysfunction predicts frailty and poor postoperative outcome in older patients scheduled for elective non-cardiac surgery. J. Nutr. Health Aging.26, 981–986. 10.1007/s12603-022-1851-3
361
Vance D. E. Del Bene V. A. Kamath V. Frank J. S. Billings R. Cho D. Y. et al . (2024). Does olfactory training improve brain function and cognition? A systematic review. Neuropsychol. Rev.34, 155–191. 10.1007/s11065-022-09573-0
362
Vasterling J. J. Brailey K. Sutker P. B. (2000). Olfactory identification in combat-related posttraumatic stress disorder. J. Trauma. Stress13, 241–253. 10.1023/A:1007754611030
363
Velluzzi F. Deledda A. Onida M. Loviselli A. Crnjar R. Sollai G. (2022). Relationship between olfactory function and BMI in normal weight healthy subjects and patients with overweight or obesity. Nutrients14:1262. 10.3390/nu14061262
364
Veyseller B. Ozucer B. Aksoy F. Yildirim Y. S. Gürbüz D. Balikçi H. H. et al . (2012). Reduced olfactory bulb volume and diminished olfactory function in total laryngectomy patients: a prospective longitudinal study. Am. J. Rhinol. Allergy26, 191–193. 10.2500/ajra.2012.26.3768
365
Viguera C. Wang J. Mosmiller E. Cerezo A. Maragakis N. J. (2018). Olfactory dysfunction in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 5, 976–981. 10.1002/acn3.594
366
Vohra V. Assi S. Kamath V. Soler Z. M. Rowan N. R. (2023). Potential role for diet in mediating the association of olfactory dysfunction and cognitive decline: a nationally representative study. Nutrients15:3890. 10.3390/nu15183890
367
Volkmann E. R. Andréasson K. Smith V. (2023). Systemic sclerosis. Lancet401, 304–318. 10.1016/S0140-6736(22)01692-0
368
Waldton S. (1974). Clinical observations of impaired cranial nerve function in senile dementia. Acta Psychiatr. Scand. 50, 539–547. 10.1111/j.16000447.1974.tb09714.x
369
Walker I. M. Fullard M. E. Morley J. F. Duda J. E. (2021). Olfaction as an early marker of Parkinson's disease and Alzheimer's disease. Handb. Clin. Neurol. 182, 317–329. 10.1016/B978-0-12-819973-2.00030-7
370
Wang H. J. Zakhari S. Jung M. K. (2010). Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J. Gastroenterol. 16, 1304–1313. 10.3748/wjg.v16.i11.1304
371
Wang L. Davis P. B. Volkow N. D. Berger N. A. Kaelber D. C. Xu R. (2022). Association of COVID-19 with new-onset Alzheimer's disease. J. Alzheimers Dis. 89, 411–414. 10.3233/JAD-220717
372
Wang Q. Chen B. Zhong X. Zhou H. Zhang M. Mai N. et al . (2021). Olfactory dysfunction is already present with subjective cognitive decline and deepens with disease severity in the Alzheimer's disease spectrum. J. Alzheimers Dis. 79, 585–595. 10.3233/JAD-201168
373
Wang T. Y. Lee S. Y. Hu M. C. Chen S. L. Chang Y. H. Chu C. H. et al . (2017). More inflammation but less brain-derived neurotrophic factor in antisocial personality disorder. Psychoneuroendocrinology85, 42–48. 10.1016/j.psyneuen.2017.08.006
374
Wang X. Younan D. Petkus A. J. Beavers D. P. Espeland M. A. Chui H. C. et al . (2021). Ambient air pollution and long-term trajectories of episodic memory decline among older women in the WHIMS-ECHO Cohort. Environ. Health Perspect. 129:97009. 10.1289/EHP7668
375
Wehling E. Naess H. Wollschlaeger D. Hofstad H. Bramerson A. Bende M. et al . (2015). Olfactory dysfunction in chronic stroke patients. BMC Neurol. 15:199. 10.1186/s12883-015-0463-5
376
Weiss G. Ganz T. Goodnough L. T. (2019). Anemia of inflammation. Blood133, 40–50. 10.1182/blood-2018-06-856500
377
Weiss J. Pyrski M. Jacobi E. Bufe B. Willnecker V. Schick B. et al . (2011). Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature472, 186–190. 10.1038/nature09975
378
Wheeler P. L. Murphy C. (2021). Olfactory measures as predictors of conversion to mild cognitive impairment and Alzheimer's disease. Brain Sci.11, 1391. 10.3390/brainsci11111391
379
Wheeler T. T. Alberts M. A. Dolan T. A. McGorray S. P. (1995). Dental, visual, auditory and olfactory complications in Paget's disease of bone. J. Am. Geriatr. Soc. 43, 1384–1391. 10.1111/j.1532-5415.1995.tb06618.x
380
Whitcroft K. L. Mancini L. Yousry T. Hummel T. Andrews P. J. (2023). Functional septorhinoplasty alters brain structure and function: Neuroanatomical correlates of olfactory dysfunction. Front. Allergy4, 1079945. 10.3389/falgy.2023.1079945
381
Whiting A. C. Marmura M. J. Hegarty S. E. Keith S. W. (2015). Olfactory acuity in chronic migraine: A cross-sectional study. Headache55, 71–75. 10.1111/head.12462
382
Wilson R. S. Yu L. Bennett D. A. (2011). Odor identification and mortality in old age. Chem. Senses36, 63–67. 10.1093/chemse/bjq098
383
Witoonpanich P. Cash D. M. Shakespeare T. J. Yong K. X. Nicholas J. M. Omar R. et al . (2013). Olfactory impairment in posterior cortical atrophy. J. Neurol. Neurosurg. Psychiatr.84, 588–590. 10.1136/jnnp-2012-304497
384
Wong K. E. Wade T. J. Moore J. Marcellus A. Molnar D. S. O'Leary D. D. et al . (2022). Examining the relationships between adverse childhood experiences (ACEs), cortisol, and inflammation among young adults. Brain Behav. Immun. Health25, 100516. 10.1016/j.bbih.2022.100516
385
Woo C. C. Miranda B. Sathishkumar M. Dehkordi-Vakil F. Yassa M. A. Leon M. (2023). Overnight olfactory enrichment using an odorant diffuser improves memory and modifies the uncinate fasciculus in older adults. Front. Neurosci. 17, 1200448. 10.3389/fnins.2023.1200448
386
Wu P. Dong J. Cheng N. Yang R. Han Y. Han Y. (2019). Inflammatory cytokines expression in Wilson's disease. Neurol. Sci. 40, 1059–1066. 10.1007/s10072-018-3680-z
387
Wurth R. Rescigno M. Flippo C. Stratakis C. A. Tatsi C. (2022). Inflammatory biomarkers in the evaluation of pediatric endogenous Cushing syndrome. Eur. J. Endocrinol.186, 503–510. 10.1530/EJE-21-1199
388
Xiao Z. Zhao Q. Liang X. Wu W. Cao Y. Ding D. (2021). Poor odor identification predicts mortality risk in older adults without neurodegenerative diseases: The Shanghai Aging Study. J. Am. Med. Dir. Assoc. 22, 2218-2219.e1. 10.1016/j.jamda.2021.05.026
389
Xie J. Van Hoecke L. Vandenbroucke R. E. (2022). The impact of systemic inflammation on Alzheimer's disease pathology. Front. Immunol. 12, 796867. 10.3389/fimmu.2021.796867
390
Yafi F. A. Jenkins L. Albersen M. Corona G. Isidori A. M. Goldfarb S. et al . (2016). Erectile dysfunction. Nature Rev. Dis. Primers2, 16003. 10.1038/nrdp.2016.3
391
Yahiaoui-Doktor M. Luck T. Riedel-Heller S. G. Loeffler M. Wirkner K. Engel C. (2019). Olfactory function is associated with cognitive performance: results from the population-based LIFE-Adult-Study. Alzheimers. Res. Ther. 11, 43. 10.1186/s13195-019-0494-z
392
Yalcinkaya E. Basaran M. M. Erdem H. Kocyigit M. Altundag A. Hummel T. (2019). Olfactory dysfunction in spondyloarthritis. Eur. Arch. Oto-rhino-laryngol.276, 1241–1245. 10.1007/s00405-019-05364-1
393
Yao L. Yi X. Pinto J. M. Yuan X. Guo Y. Liu Y. et al . (2018). Olfactory cortex and olfactory bulb volume alterations in patients with post-infectious olfactory loss. Brain Imag. Behav. 12, 1355–1362. 10.1007/s11682-017-9807-7
394
Ye C. Guo X. Wu J. Wang M. Ding H. Ren X. (2022). Mediated macrophage activation and polarization can promote adenoid epithelial inflammation in adenoid hypertrophy. J. Inflamm. Res. 15, 6843–6855. 10.2147/JIR.S390210
395
Yin K. Agrawal D. K. (2014). Vitamin D and inflammatory diseases. J. Inflamm. Res.7, 69–87. 10.2147/JIR.S63898
396
Yoo H. S. Jeon S. Chung S. J. Yun M. Lee P. H. Sohn Y. H. et al . (2018). Olfactory dysfunction in Alzheimer's disease- and Lewy body-related cognitive impairment. Alzheimers. Dement. 14, 1243–1252. 10.1016/j.jalz.2018.05.010
397
Zhang C. Han Y. Liu X. Tan H. Dong Y. Zhang Y. et al . (2022). Odor enrichment attenuates the anesthesia/surgery-induced cognitive impairment. Ann. Surg. 277, e1387–e1396. 10.1097/SLA.0000000000005599
398
Zhang H. Wang Y. Zhao Y. Liu T. Wang Z. Zhang N. et al . (2022). PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci. Therap.28, 1748–1766. 10.1111/cns.13913
399
Zhang Z. Zhang B. Wang X. Zhang X. Yang Q. X. Qing Z. et al . (2019). Olfactory dysfunction mediates adiposity in cognitive impairment of type 2 diabetes: Insights from clinical and functional neuroimaging studies. Diabetes Care42, 1274–1283. 10.2337/dc18-2584
400
Zhao L. Hou C. Yan N. (2022). Neuroinflammation in retinitis pigmentosa: therapies targeting the innate immune system. Front. Immunol.13:1059947. 10.3389/fimmu.2022.1059947
401
Zhong P. X. Chen Y. H. Li I. H. Wen Y. L. Kao H. H. Chiang K. W. et al . (2023). Increased risk of olfactory and taste dysfunction in the United States psoriasis population. Eur. Arch. Otorhinolaryngol. 280, 695–702. 10.1007/s00405-022-07530-4
402
Zucco G. M. Amodio P. Gatta A. (2006). Olfactory deficits in patients affected by minimal hepatic encephalopathy: a pilot study. Chem. Senses31, 273–278. 10.1093/chemse/bjj029
403
Zucco G. M. Ingegneri G. (2004). Olfactory deficits in HIV-infected patients with and without AIDS dementia complex. Physiol. Behav. 80, 669–674. 10.1016/j.physbeh.2003.12.001
Summary
Keywords
olfaction, inflammation, medical conditions, causation, correlation, olfactory dysfunction, olfactory enrichment
Citation
Leon M, Troscianko ET and Woo CC (2024) Inflammation and olfactory loss are associated with at least 139 medical conditions. Front. Mol. Neurosci. 17:1455418. doi: 10.3389/fnmol.2024.1455418
Received
27 June 2024
Accepted
16 September 2024
Published
11 October 2024
Volume
17 - 2024
Edited by
Jolanta Dorszewska, Poznan University of Medical Sciences, Poland
Reviewed by
Donald A. Wilson, New York University, United States
Brigit High, National Institutes of Health (NIH), United States
Carla Masala, University of Cagliari, Italy
Leslie M. Kay, The University of Chicago, United States
Updates
Copyright
© 2024 Leon, Troscianko and Woo.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Michael Leon mleon@uci.edu
†Present address: Emily T. Troscianko, Department of English, University of California, Santa Barbara, Santa Barbara, CA, United States
Disclaimer
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.