ORIGINAL RESEARCH article
Front. Neurorobot.
Volume 19 - 2025 | doi: 10.3389/fnbot.2025.1604453
Pre-training, Personalization, and Self-calibration: all a Neural Network-based Myoelectric Decoder Needs
Provisionally accepted- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Myoelectric control systems translate electromyographic signals (EMG) from muscles into movement intentions, allowing control over various interfaces, such as prosthetics, wearable devices, and robotics. However, a major challenge lies in enhancing the system's ability to generalize, personalize, and adapt to the high variability of EMG signals. Artificial intelligence, particularly neural networks, has shown promising decoding performance when applied to large datasets. However, highly parameterized deep neural networks usually require extensive user-specific data with ground truth labels to learn individual unique EMG patterns. However, the characteristics of the EMG signal can change significantly over time, even for the same user, leading to performance degradation during extended use. In this work, we propose an innovative three-stage neural network training scheme designed to progressively develop an adaptive workflow, improving and maintaining the network performance on 28 subjects over 2 days. Experiments demonstrate the importance and necessity of each stage in the proposed framework.
Keywords: adaptation, myoelectric control, Neural Network, deep learning, Transfer Learning
Received: 01 Apr 2025; Accepted: 11 Jul 2025.
Copyright: © 2025 Ma, Jiang and Nazarpour. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Kianoush Nazarpour, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.