ORIGINAL RESEARCH article
Front. Nucl. Eng.
Sec. Nuclear Reactor Design
Volume 4 - 2025 | doi: 10.3389/fnuen.2025.1628866
This article is part of the Research TopicMultiphysics Methods and Analysis Applied to Nuclear Reactor SystemsView all 9 articles
Uncertainty quantification and sensitivity analysis of a nuclear thermal propulsion reactor startup sequence
Provisionally accepted- 1Idaho National Laboratory (DOE), Idaho Falls, United States
- 2Department of Nuclear Science & Engineering, Abilene Christian University, Abilene, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The research presented in this article describes progress in applying stochastic methods, uncertainty quantification, parametric studies, and variance-based sensitivity analysis (also known as Sobol sensitivity analysis) to a full-core model of a nuclear thermal propulsion (NTP) system simulated via the radiation transport code Griffin to simulate neutronics. Our goal is to develop a reduced-order (surrogate) model that can be rapidly sampled with perturbations to multiple input parameters. In this NTP system, reactivity and power feedback affect the rotation of control drums (CDs), which is itself controlled by a hybrid proportional-integral-derivative (PID) controller actuated by the power demand and reactivity feedback from the numerical model. This model uses reactor kinetic feedback (mean generation time [Λ] and effective delayed neutron fraction [𝛽eff] from a transient Griffin simulation executed via Griffin's improved quasi-static solver to provide the kinetic parameters) as inputs to functions that control the CD rotation angle. By investigating numerous stochastic approaches, we developed a dual-purpose surrogate model of the NTP system, using polynomial regression in the Multiphysics Object Oriented Simulation Environment (MOOSE) Stochastic Tools Module (STM). The trained model can be rapidly sampled while simultaneously perturbing various input parameters, such as coefficients on the PID control or temperature (directly affecting the neutron cross section). The surrogate model delivers accurate (within 5%) results at speeds orders of magnitude faster (minutes, not days of computational time) than the base model. Once the surrogate model has been trained, distributions of the uncertain parameters can be changed at will to investigate the effects of perturbing multiple inputs as well as the effects of these inputs on the model output. For example, coefficients used in the PID control system may vary due to some type of physical interference, or uncertainty may exist in the temperature of the neutron cross sections in various regions of the reactor. A distribution can be placed on these parameters, and operational boundaries can be determined. The goal of this work is to support development of an advanced control system for operating CDs in a functioning NTP system. This work is a scoping study of the MOOSE STM.
Keywords: Nuclear thermal propulsion, sensitivity analysis, uncertainty quantification, Instrumentation & control, Autonomous control, Nuclear systems
Received: 14 May 2025; Accepted: 18 Sep 2025.
Copyright: © 2025 Harter and DeHart. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jackson Robert Harter, jackson.harter@inl.gov
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.