Your new experience awaits. Try the new design now and help us make it even better

MINI REVIEW article

Front. Parasitol., 05 December 2025

Sec. Parasite Genetics

Volume 4 - 2025 | https://doi.org/10.3389/fpara.2025.1721690

Genetic diversity and genotyping of Echinococcus multilocularis: a minireview

Franziska Rachel,*&#x;Franziska Rachel1,2*†Franz Josef Conraths&#x;Franz Josef Conraths1†Pavlo Maksimov,*&#x;Pavlo Maksimov1,3*†
  • 1Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Institute of Epidemiology, National Reference Laboratory for Echinococcosis, Greifswald, Germany
  • 2Department of Biology, Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
  • 3Surveillance Authority for Public Law Duties of the Medical Service East, Bundeswehr, Potsdam, Germany

The genome of Echinococcus multilocularis, one of the most dangerous endoparasites for humans in the northern hemisphere, has been studied for decades, but its global genetic diversity has not yet been fully deciphered. Yet, our understanding of the diversity of this parasite has recently improved significantly due to the development of new genotyping methods. However, the use of different methods and markers has made it difficult—and in some cases impossible—to compare existing studies directly. As a result, accurate information on the global genetic diversity of E. multilocularis remains unavailable, although such knowledge is essential from both clinical and epidemiological perspectives. Here we provide an overview of the state of knowledge on the genetic diversity of E. multilocularis, and the methods used for genotyping this parasite and provide an outlook on needed future research to understand the diversity of this fascinating parasite.

Introduction

Echinococcus (E.) multilocularis (Leuckart, 1863; Vogel, 1957; Vuitton et al., 2020) is a dangerous and zoonotic endoparasite of the northern hemisphere (Rausch, 1967; Conraths et al., 2017; Deplazes et al., 2017; Thompson, 2017; Vuitton et al., 2020) causing alveolar echinococcosis (AE), which can be fatal if left untreated (Vuitton et al., 2015). Even with adequate treatment it is a chronic and serious disease that can cause long-term physical and psychosocial stress for affected people (Vuitton et al., 2015, Vuitton et al., 2020; Autier et al., 2022; Nikendei et al., 2023; Antolová et al., 2024).

Genetic studies have significantly changed our understanding of the diversity of this parasite in recent years. At the end of the 20th and beginning of the 21st century, it was still assumed that the genetic diversity of E. multilocularis was rather low or that the existing genetic markers were insufficient to study genetic diversity in sufficient depth (Bowles et al., 1992; Bart et al., 2003; Nakao et al., 2009). In recent years, a significantly higher variability in the genome of E. multilocularis could be detected with the arrival of new genotyping methods (Nakao et al., 2009; Šnábel et al., 2020; Bohard et al., 2023; Lallemand et al., 2024; Santoro et al., 2024; Rachel et al., 2025).

Investigating the diversity of E. multilocularis is important, because knowledge on different genotypes can contribute to a better understanding of the spread, genetic adaptation, and virulence of the parasite in different hosts. Moreover, detailed knowledge on the genetic diversity may help to establish more targeted diagnostics, to improve the tracing back of the infection source, and to develop better therapeutic strategies (Wen et al., 2019; Casulli and Tamarozzi, 2021; Romig and Wassermann, 2024; Simoncini and Massolo, 2024). All this can also help to improve our understanding of the epidemiology of this parasite. The aim of this minireview is therefore to present a concise overview and a summary of the current state of knowledge regarding the genetic diversity and genotyping of E. multilocularis, with the goal of identifying promising methods and future opportunities in this field.

Taxonomy, life cycle, and distribution

E. multilocularis (Leuckart, 1863) is a species of the genus Echinococcus that occurs in the northern hemisphere (Oksanen et al., 2016; Simoncini and Massolo, 2024). Various rodents and lagomorphs are involved in the life cycle as intermediate hosts, depending on the spatial distribution of the respective species in the geographic area where the parasite is endemic. Humans are dead-end intermediate hosts and various canids serve E. multilocularis as definitive hosts (Figure 1) (Woolsey and Miller, 2021; Romig and Wassermann, 2024; Lundström-Stadelmann et al., 2025). In Europe, the sylvatic life cycle of E. multilocularis dominates, but there is also a ‘domestic life cycle’, in which dogs play a central role. Both cycles can lead to an accidental oral infections of humans. Infections with cats as definitive hosts have been reported, but the prevalence is usually low and their role in the life cycle has been controversially discussed due to the usually low intensity of infection (Petavy et al., 2000; Dyachenko et al., 2008; Umhang et al., 2015; Knapp et al., 2016; Karamon et al., 2019; Umhang et al., 2022) and the limited number of excreted eggs (Thompson et al., 2006; Dyachenko et al., 2008; Umhang et al., 2015, Umhang et al., 2022). One study showed that eggs shed by cats led to a few infections in mice (Kapel et al., 2006). Therefore, the risk of humans infections through eggs shed by cats seems rather low (Thompson et al., 2006; Hegglin and Deplazes, 2013; Umhang et al., 2015; Oksanen et al., 2016), indicating that cats play a minor role in the epidemiology of the parasite (Thompson et al., 2006; Hegglin and Deplazes, 2013; Conraths and Deplazes, 2015; Umhang et al., 2015; Oksanen et al., 2016). In conclusion, cats seem to play a negligible role in transmission (Kamiya et al., 1985; Thompson et al., 2003; Umhang et al., 2015; Knapp et al., 2016; Furtado Jost et al., 2023). Studies on the spread of E. multilocularis show that, in addition to the presence of specific hosts, the prevalence is highly likely to be influenced by environmental factors such as temperature and humidity, as well as by the behaviour of hosts (Schneider et al., 2023) and land-use (Staubach et al., 2001).

Figure 1
Diagram illustrating the life cycle of Echinococcus, including definitive and intermediate hosts. The cycle involves red foxes as definitive hosts, with adult parasites in their intestines producing eggs. Eggs enter the environment and intermediate hosts, such as rodents, develop cysts. Humans, as dead-end hosts, can be affected. The cycle continues with the parasite developing through intermediate and definitive hosts.

Figure 1. Life cycle of Echinococcus multilocularis with a selection of definitive, intermediate and dead-end intermediate hosts, as well as all stages of development of the parasite (created in BioRender. Rachel, F. (2025) https://BioRender.com/q81lfds and modified after Thompson (2017) and Centers for Disease Control and Prevention (2019)).

The taxonomy of the genus Echinococcus has undergone a transformation since the diseases caused by different species of this genus were first described. While Virchow (1855) only distinguished the two species E. multilocularis and E. granulosus on the basis of the clinical presentation of the respective diseases these parasites caused, Leuckart (1863) described E. multilocularis as a separate species. The years that followed until the late 20th century were marked by ambiguous classifications and taxonomic confusion, which led, for example, to postulating subspecies of E. multilocularis, which are no longer recognised (Romig et al., 2017; Thompson, 2020; Vuitton et al., 2020). Genetic classification of the members of the genus Echinococcus into four distinct species only became possible in the early 1990s (Bowles et al., 1992). Nevertheless, doubts regarding the validity of some species arose over time due to results of the first genetic studies, as the phenotype of the adult parasite in different hosts did not always reflect the found genotype (Bowles and McManus, 1993a). In the following years, the examination of isolates from different continents (North America, Europe, Asia) revealed a clear genetic differentiation of populations of E. multilocularis (Šnábel et al., 2020). The species E. multilocularis could thus be clearly separated from the E. granulosus sensu lato (s.l.) complex, but despite substantial progress, it was still difficult to classify the genus Echinococcus taxonomically and phylogenetically in a correct fashion (Knapp et al., 2015). Molecular biology proved invaluable in resolving this issue, as it not only reinstated the original taxonomic hypotheses, but also confirmed the reliability of distinct morphological characteristics by incorporating sequence data (Thompson, 2020). In addition to E. multilocularis, nine other species in the genus Echinococcus could be genetically confirmed or identified (E. granulosus, E. equinus, E. ortleppi, E. canadensis, E. intermedius, E. felidis, E. shiquicus, E. vogeli, E. oligarthra) (Thompson, 2020; Vuitton et al., 2020).

Today E. multilocularis, measuring only 2 to 4 mm in size, with four suction cups on its head, a double hook crown, and usually five proglottids, is classified in the phylum Platyhelminthes, class Cestoda, subclass Eucestoda, family Taeniidae, and genus Echinococcus, along with nine other species (Nakao et al., 2010b; Thompson, 2017; Conraths and Maksimov, 2020; Vuitton et al., 2020).

Genetic diversity of Echinococcus multilocularis – state of research

The genetic diversity of E. multilocularis is the focus of scientific interest as the infection is a typical example for the One Health approach, as animals and humans can be infected, environmental factors are important for transmission, and it is suspected that different genotypes may have different virulence (Table 1 and Figure 2) (Vogel et al., 1990; Bowles et al., 1992; Nakao et al., 2009; Spotin et al., 2018; Herzig, 2019; Šnábel et al., 2020; Bohard et al., 2023; Conlon et al., 2024; Cafiero et al., 2025; Guo et al., 2025; Rachel et al., 2025). The researchers’ questions focus on the following areas: evolutionary development, taxonomy, geographic spread across the Northern Hemisphere over time, virulence in various hosts with a particular focus on humans due to severe alveolar echinococcosis, and molecular epidemiology (Table 1).

Table 1
www.frontiersin.org

Table 1. Overview of scientific papers published since 1990 (up to January 2025) on the topic of genetic diversity in Echinococcus multilocularis.

Figure 2
World map highlighting countries in green, including Canada, the United States, Russia, China, Kazakhstan, Iran, and Mongolia. Other countries are in gray.

Figure 2. World map showing the countries (in green) in the northern hemisphere that were examined in the papers included in this minireview (created with mapchart.net).

The genetic diversity of E. multilocularis has been studied since the early 1990s. Initially, there were three possible methods for analysing the DNA of E. multilocularis: PCR, Sanger Sequencing and comparative analysis of mitochondrial genes (Maxam and Gilbert, 1977; Sanger et al., 1977, Sanger et al., 1980; Saiki et al., 1985; Avise et al., 1987; Tajima, 1989; Bowles et al., 1992; Excoffier et al., 1992; Bowles and McManus, 1993a). The PCR method made it possible to amplify specific regions of the genome for the first time (Gottstein and Mowatt, 1991; Bretagne et al., 1993), Sanger Sequencing allowed the determination of the nucleotide sequence (Bowles et al., 1992), and comparative analysis helped to clarify phylogenetic relationships and population structure (Bowles et al., 1995). While initially only short fragments of individual genes could be sequenced (Bowles and McManus, 1993b), the determined sequences became longer and longer over the course of the following decades, until several entire genes (Herzig et al., 2021) (see also Table 1) and finally the entire mitogenome DNA sequence served as the basis for the respective studies (Nakao et al., 2002; Bohard et al., 2023; Lallemand et al., 2024; Guo et al., 2025; Rachel et al., 2025).

Parts of genomic DNA (gDNA) were also used as markers. These were mainly microsatellite markers (Bretagne et al., 1996; Nakao et al., 2003; Bart et al., 2006; Knapp et al., 2007). One microsatellite marker, named EmsB, was used particularly frequently (e.g. Knapp et al., 2009; Casulli et al., 2010; Umhang et al., 2017; Sacheli et al., 2023). However, it became apparent that samples from different regions are always required for the creation of EmsB dendrograms, as the marker and the statistical method applied to analyse the data influence the cluster structure of the dendrogram due to the number of individual variations in the used samples (Knapp et al., 2020; Umhang et al., 2021b). There was also further criticism (Mohammadi and Harandi, 2024) of the EmsB studies, limiting the significance and accuracy of these papers and suggesting that studying the diversity of E. multilocularis could be improved by using other genetic methods (e.g. NGS) that cover a broader range of genetic markers.

Older studies often did not use complete genes or applied sequences from multiple different genes or genetic markers, respectively. Moreover, when the sequences of the same gene (e.g. cox1 or nad1) were examined across studies, these often differed in their length, or only the “informative” sections of the gene fragments were included in the analysis (Antolová et al., 2024). Moreover, the nomenclature of the identified genotypes and haplotypes was inconsistent, with some studies even reversing names (Šnábel et al., 2020). These inconsistencies resulted in a situation, where little to no reliable assessment of the genetic diversity of E. multilocularis could be derived from the literature of the past decades, as the data are largely incomparable (e.g., mtDNA, microsatellites of gDNA) (Table 1).

Given the current critical perspective on EmsB microsatellite analysis, hypotheses derived from this method—such as the mainland-island model proposed by Knapp et al. (2009)—require confirmation through alternative genetic approaches. This is particularly important because other studies employing mitochondrial DNA markers have either documented an east-to-west spread of haplotypes (Nakao et al., 2009) or have been unable to determine a directional pattern definitively, discussing multiple possible scenarios (Karamon et al., 2017). It is important to note, however that the sample sizes studied by Nakao et al. (2009) and Knapp et al. (2009) and the origin of the specimens were different, thus, the conclusions on the circulation of the respective strains in the study regions were not identical. Yet, integrating diverse genetic methods is essential to elucidate the population dynamics and dispersal routes of E. multilocularis robustly. Although good results have already been achieved with a few mtDNA genes, it may be preferable to analyse the entire mitogenome for the investigation of genetic diversity as already done by some investigators (Bohard et al., 2023; Lallemand et al., 2024; Guo et al., 2025; Rachel et al., 2025). This approach has the advantage that, once a good marker for the genetic diversity of E. multilocularis has been identified, the data from older studies can also be validated and may also be used to examine specific sections of these sequences. Furthermore, a study by Guo et al. (2025) analysed mitogenome sequences from a limited number of E. multilocularis isolates and provided preliminary evidence suggesting a potential correlation between mitogenome sequence-based genotypes and the virulence of the respective strains in laboratory mice. However, due to the small sample size, these findings should be interpreted with caution and regarded preliminary or as an initial indication warranting further investigation.

Due to methodological differences outlined above, the genetic diversity of E. multilocularis has been reported variably across studies. Early investigations, which analysed only very short mitochondrial DNA segments, estimated the genetic diversity of the parasite to be quite low (Bowles et al., 1992; Bowles and McManus, 1993a; Okamoto et al., 1995). By contrast, analyses of the same limited DNA segments in E. granulosus revealed substantially higher genetic diversity, erroneously leading to the conclusion that diversity in E. multilocularis is low. Consequently, the findings of earlier studies are of limited value (Bowles et al., 1992; Bowles and McManus, 1993a).

The analysis of the complete mtDNA also shows a larger number of Single Nucleotide Polymorphisms (SNPs), which led to a larger number of haplotypes and thus indicates greater genetic diversity, but also greater intraspecific variation (Bohard et al., 2023; Lallemand et al., 2024; Guo et al., 2025). While an early study (Nakao et al., 2009) showed that the E. multilocularis population can be divided on a continental level (with clades for Europe, Asia, and North America), the latest investigations (Bohard et al., 2023; Lallemand et al., 2024; Guo et al., 2025) demonstrate that it is possible to identify regions with specific haplotypes. Bohard et al. (2023) identified 13 different haplotypes in human samples from France. Lallemand et al. (2024) analysed samples from France, Asia, North America and the Arctic. They detected 58 haplotypes, which were grouped into four haplogroups (with three micro-haplogroups). These groups could be assigned to specific regions. Haplogroup HG1 was identified in Alaska, St. Lawrence Island, Yakutia (Russia) and Svalbard (Norway), while HG2 occurred in Asia, North America and Europe. Haplogroup HG3 could be further divided into three micro-haplogroups (HG3a: North America, Europe; HG3b and HG3c: Europe). A fourth haplogroup, HG4, comprised only one isolate from Olkhon Island (Russia). Guo et al. (2025), examined the samples for intraspecific variation and found that the strain from Alaska (EM-AK) produced more protoscolices than the other strains tested and that the EM-AK strain triggered a stronger inflammatory response and liver fibrosis in laboratory mice than the other three strains. This EM-AK strain belongs to the North American clade. The data from the studies, where the complete mitogenome sequences were applied, have shown that the diversity is higher than was assumed a few years ago. If the complete gDNA (created by WGS) is be used in the future, it will probably be possible to increase the knowledge on the genetic diversity within the species E. multilocularis even further and it may ultimately become possible to obtain a more detailed resolution of genetic diversity at the local level.

Genotyping methods

When research into the genetic diversity of E. multilocularis began, DNA cloning techniques were used (Vogel et al., 1990). This was followed by analysis using various markers (Table 1). Over time, two techniques proved to be suitable and were widely used. These were the examination of mitochondrial markers (fragments of genes, whole genes or the complete mitogenome) by means of sequencing (e.g. Sanger sequencing, NGS) and EmsB microsatellite studied by fragment size analysis.

The EmsB microsatellite marker of E. multilocularis is located on chromosome 5 in the genome (gDNA) of the parasite. It is present in 40 copies, which are arranged in tandem and have a (CA)n(GA)m pattern (Bart et al., 2006; Valot et al., 2015). The described advantages of the EmsB method are its high discriminatory power, its applicability to different sample types, and its straightforward workflow (Valot et al., 2015; Knapp et al., 2020; Sacheli et al., 2023). The discussed disadvantages are that special equipment is required, interpretation of the results is not easy, the genetic diversity of E. multilocularis is underestimated because only a small part of the gDNA is used, and comparability can be difficult, which is at least partially due to the method applied for normalisation and evaluation of raw microsatellite data (Bart et al., 2006; Valot et al., 2015; Knapp et al., 2020).

For reasons of practicality, robustness and cost-effectiveness, some research groups investigating the genetic diversity of E. multilocularis tend to employ sequencing techniques—particularly Next-Generation Sequencing (NGS)—and Single Nucleotide Polymorphism (SNP) analysis (Bohard et al., 2023; Lallemand et al., 2024; Mohammadi and Harandi, 2024; Rachel et al., 2025). Different NGS systems have unique characteristics, each with specific advantages and disadvantages (Pedroza Matute and Iyavoo, 2025). Some advantages of these methods are their high discriminatory power, the ability to examine additional loci, while maintaining short amplicon sizes, and, in combination with SNP analysis (low mutation rate), NGS is able to perform more stable ancestry tracking and has a high multiplex capacity (Pedroza Matute and Iyavoo, 2025). Furthermore, more markers can be found and analysed per run (Davey et al., 2011). Due to the fact that the entire genetic sequence is analysed, a more complete genetic picture can be created by recording SNPs, INDELs, etc (Satam et al., 2023, 2024). Disadvantages of NGS can include high costs (although these have fallen significantly in recent years), high complexity of the sequencing devices and the need for expertise in bioinformatics to evaluate the data (Pedroza Matute and Iyavoo, 2025). Furthermore, huge amounts of data require a lot of storage space, usually in the form of servers (Bagger et al., 2024). A further potential limitation of NGS methods lies in the high costs for equipment, which may restrict their use to a limited number of laboratories. However, NGS analysis can nowadays be outsourced to external service laboratories and recent advances for example in nanopore technology (e.g. by Oxford Nanopore Technologies) have introduced affordable devices that promote broader accessibility to NGS technology. Yet, last but not least, the amount and quality of the DNA must be sufficient to perform NGS and obtain valuable results (McNulty et al., 2020).

While NGS methods can be costly and require a great deal of IT knowledge for evaluation (e.g. administration of IT infrastructure, development of required bioinformatic pipelines, and management of these via respective workflows), they are well suited to analyse genetic diversity, as they allow the complete parasite genome to be sequenced, which can increase the detection of variable sites. Furthermore, read data from full-length gene sequences—in comparison with gene fragments—permit more robust harmonisation and cross-study evaluation, thus facilitating integrated analysis of genetic polymorphisms and population diversity in E. multilocularis. Furthermore, by analysing SNPs, they could potentially identify strains that are particularly virulent in some species (Guo et al., 2025), which may be relevant for the treatment and prognosis of patients with alveolar echinococcosis (AE) if applicable to humans.

Epidemiological impact of genetic diversity

Single Nucleotide Polymorphisms (SNPs) may alter protein structure, thereby affecting binding capacity, transmission dynamics, parasite density within the host, and the virulence of E. multilocularis (Wen et al., 2019). Genetic polymorphisms usually occurs due to evolutionary pressure as a result of a change in the system (new host, altered environmental conditions due to, for example, the host migrating to another region) (Kim and Shaw, 2021). This can have implications for the host. For example, a different haplotype seems to have a different virulence, or even the morphology of the parasite may be slightly different (Guo et al., 2025). Such changes could, for example, result in altered drug efficacy or modified metabolic processing by the parasite, potentially impacting treatment outcomes and consequently affecting the survival probability of patients with alveolar echinococcosis (AE). Furthermore, intraspecific ‘specialisation’ of certain haplotypes for certain hosts may occur. In North America, certain haplotypes were found that prefer coyotes as hosts, as well as haplotypes that are particularly virulent (Nakao et al., 2009; Alvarez Rojas et al., 2020; Guo et al., 2025). This results in different distribution patterns of E. multilocularis in different host populations. These genetic differences may thus be important for the surveillance of E. multilocularis, as they could be used to identify and control sources of infection and hotspots in the environment.

Future research and challenges

Despite many years of research, our knowledge of the genetic diversity of E. multilocularis is still limited. However, new methods and improved sequencing techniques (e.g. further development of 3rd generation long read NGS platform technology) may make this research more efficient and less costly in the future (Santa et al., 2021; Satam et al., 2023; Espinosa et al., 2024; Satam et al., 2024; Rachel et al., 2025). The adoption of a standardised nomenclature for SNPs—such as that established for the human genome (Hart et al., 2024; Phan et al., 2025)—would be desirable to facilitate more effective, harmonised comparison and rapid evaluation of genotype and haplotype data for E. multilocularis in future studies. It would also be beneficial if more working groups aimed to obtain complete mitogenome sequences from their samples. This could make it possible to combine data obtained with newly discovered marker regions and information established with older sequence data and to analyse them together. The use of complete gDNA may also be a future goal to expand genetic diversity. This would make it possible to identify potential chains of infection at the local level and take measures to reduce the number of E. multilocularis infections, especially in endemic areas, thereby protecting humans and animals.

Conclusion

It was only in the last two years, that research methods have matured to the point where good data could be collected for the evaluation of genetic diversity of E. multilocularis, thanks to the use of NGS and the examination of the mitogenome using SNPs. Furthermore, older findings have also been confirmed in the new studies, such as the discovery that there are three clades of E. multilocularis (Europe, Asia, North America) (Nakao et al., 2009; Spotin et al., 2018; Šnábel et al., 2020; Guo et al., 2025). The virulence of individual strains to particular host species has also been determined (Guo et al., 2025). It seems now important to improve cooperation within the E. multilocularis research community, to establish a uniform nomenclature for the naming of haplotypes/genotypes and SNPs and to harmonise the bioinformatic analysis of E. multilocularis genome sequences so that studying the genetic diversity of this parasite can be further improved.

Author contributions

FR: Conceptualization, Writing – review & editing, Writing – original draft, Visualization. FC: Funding acquisition, Project administration, Supervision, Writing – review & editing. PM: Supervision, Funding acquisition, Project administration, Writing – review & editing.

Funding

The author(s) declared that financial support was received for this work and/or its publication. This work was supported by funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement number 773830: One Health European Joint Programme (MEME project; https://onehealthejp.eu/jrp-meme/).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Abulizi A., Wen H., Zhang C., Li L., Ran B., Jiang T., et al. (2018). Sequence analysis of mitochondrial cytochrome c oxidase 1 and cytochrome b genes of echinococcus multilocularis from human patients. Int. J. Clin. Exp. Pathol. 11, 795–801.

PubMed Abstract | Google Scholar

Alshammari A., Subhani M., Wakid M., Alkhaldi A., Hussain S., Malik M., et al. (2024). Genetic diversity and population structure of Echinococcus multilocularis: An in-silico global analysis. J. Advanced Veterinary Anim. Res. 11, 264–274. doi: 10.5455/javar.2024.k772

PubMed Abstract | Crossref Full Text | Google Scholar

Alvarez Rojas C., Kronenberg P., Aitbaev S., Omorov R., Abdykerimov K., Paternoster G., et al. (2020). Genetic diversity of Echinococcus multilocularis and Echinococcus granulosus sensu lato in Kyrgyzstan: The A2 haplotype of E. multilocularis is the predominant variant infecting humans. PLoS Negl. Trop. Dis. 14, e0008242–e0008242. doi: 10.1371/journal.pntd.0008242

PubMed Abstract | Crossref Full Text | Google Scholar

Antolová D., Šnábel V., Jarošová J., Cavallero S., D’Amelio S., Syrota Y., et al. (2024). Human alveolar echinococcosis in Slovakia: Epidemiology and genetic diversity of Echinococcus multilocularis 2000-2023. PLoS Negl. Trop. Dis. 18, e0011876. doi: 10.1371/journal.pntd.0011876

PubMed Abstract | Crossref Full Text | Google Scholar

Autier B., Gottstein B., Millon L., Ramharter M., Gruener B., Bresson-Hadni S., et al. (2022). “Alveolar echinococcosis in immunocompromised hosts,” in Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases (United Kingdom: Elsevier B.V.). doi: 10.1016/j.cmi.2022.12.010

PubMed Abstract | Crossref Full Text | Google Scholar

Avise J., Arnold J., Ball R., Bermingham E., Lamb T., Neigel J., et al. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Systematics 18, 489–522. doi: 10.1146/annurev.es.18.110187.002421

Crossref Full Text | Google Scholar

Bagger F., Borgwardt L., Jespersen A., Hansen A., Bertelsen B., Kodama M., et al. (2024). Whole genome sequencing in clinical practice. BMC Med. Genomics 17, 39. doi: 10.1186/s12920-024-01795-w

PubMed Abstract | Crossref Full Text | Google Scholar

Bagrade G., Šnábel V., Romig T., Ozoliņš J., Hüttner M., Miterpáková M., et al. (2008). Echinococcus multilocularis is a frequent parasite of red foxes (Vulpes vulpes) in Latvia. Helminthologia 45, 157–161. doi: 10.2478/s11687-008-0032-1

Crossref Full Text | Google Scholar

Bart J.-M., Breyer I., Gottstein B., Romig T., and Piarroux R. (2003). Development of molecular tools to explore genetic diversity in Echinococcus multilocularis. Helminthologia 117–121.

Google Scholar

Bart J. M., Knapp J., Gottstein B., El-Garch F., Giraudoux P., Glowatzki M. L., et al. (2006). EmsB, a tandem repeated multi-loci microsatellite, new tool to investigate the genetic diversity of Echinococcus multilocularis. Infection Genet. Evol. 6, 390–400. doi: 10.1016/j.meegid.2006.01.006

PubMed Abstract | Crossref Full Text | Google Scholar

Bohard L., Lallemand S., Borne R., Courquet S., Bresson-Hadni S., Richou C., et al. (2023). Complete mitochondrial exploration of Echinococcus multilocularis from French alveolar echinococcosis patients. Int. J. Parasitol. 53, 555–564. doi: 10.1016/j.ijpara.2023.03.006

PubMed Abstract | Crossref Full Text | Google Scholar

Bowles J., Blair D., and McManus D. (1992). Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol. Biochem. Parasitol. 54, 165–173. doi: 10.1016/0166-6851(92)90109-W

PubMed Abstract | Crossref Full Text | Google Scholar

Bowles J., Blair D., and McManus D. (1995). A molecular phylogeny of the genus Echinococcus. Parasitology 110, 317–328. doi: 10.1017/S0031182000080902

PubMed Abstract | Crossref Full Text | Google Scholar

Bowles J. and McManus D. (1993a). Molecular variation in echinococcus. Acta Tropica 53, 291–305. doi: 10.1016/0001-706X(93)90035-A

PubMed Abstract | Crossref Full Text | Google Scholar

Bowles J. and McManus D. (1993b). NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. Int. J. Parasitol. 23, 969–972. doi: 10.1016/0020-7519(93)90065-7

PubMed Abstract | Crossref Full Text | Google Scholar

Bretagne S., Assouline B., Vidaud D., Houin R., and Vidaud M. (1996). Echinococcus multilocularis: microsatellite polymorphism in U1 snRNA genes. Exp. Parasitol. 82, 324–328. doi: 10.1006/expr.1996.0040

PubMed Abstract | Crossref Full Text | Google Scholar

Bretagne S., Guillou J., Morand M., and Houin R. (1993). Detection of Echinococcus multilocularis DNA in fox faeces using DNA amplification. Parasitology 106, 193–199. doi: 10.1017/S0031182000074990

PubMed Abstract | Crossref Full Text | Google Scholar

Cafiero S. A., Petroni L., Natucci L., Tomassini O., Romig T., Wassermann M., et al. (2025). New evidence from the northern Apennines, Italy, suggests a southward expansion of Echinococcus multilocularis range in Europe. Sci. Rep. 15, 7353. doi: 10.1038/s41598-025-91596-7

PubMed Abstract | Crossref Full Text | Google Scholar

Casulli A., Bart J., Knapp J., La Rosa G., Dusher G., Gottstein B., et al. (2009). Multi-locus microsatellite analysis supports the hypothesis of an autochthonous focus of Echinococcus multilocularis in northern Italy. Int. J. Parasitol. 39, 837–842. doi: 10.1016/j.ijpara.2008.12.001

PubMed Abstract | Crossref Full Text | Google Scholar

Casulli A., Széll Z., Pozio E., and Sréter T. (2010). Spatial distribution and genetic diversity of Echinococcus multilocularis in Hungary. Veterinary Parasitol. 174, 241–246. doi: 10.1016/j.vetpar.2010.08.023

PubMed Abstract | Crossref Full Text | Google Scholar

Casulli A. and Tamarozzi F. (2021). Tracing the source of infection of cystic and alveolar echinococcosis, neglected parasitic infections with long latency: The shaky road of “evidence” gathering. PLoS Negl. Trop. Dis. 15, e0009009. doi: 10.1371/journal.pntd.0009009

PubMed Abstract | Crossref Full Text | Google Scholar

Centers for Disease Control and Prevention (2019). Echinococcosis. Available online at: https://www.cdc.gov/dpdx/echinococcosis/ (Accessed July 15, 2019).

Google Scholar

Conlon C., Brigandi J., Frair J., Michaud-LeBlanc C., Schuler K., Lejeune M., et al. (2024). Echinococcus multilocularis in new york wildlife: distribution and genetic diversity of an emerging pathogen. para 110, 697–708. doi: 10.1645/24-54

PubMed Abstract | Crossref Full Text | Google Scholar

Conraths F. and Deplazes P. (2015). Echinococcus multilocularis: Epidemiology, surveillance and state-of-the-art diagnostics from a veterinary public health perspective. Veterinary Parasitol. 213, 149–161. doi: 10.1016/j.vetpar.2015.07.027

PubMed Abstract | Crossref Full Text | Google Scholar

Conraths F. and Maksimov P. (2020). Epidemiology of Echinococcus multilocularis infections: A review of the present knowledge and of the situation in Germany. Berliner und Münchener Tierärztliche Wochenschrift 133. doi: 10.2376/0005-9366-2020-5

Crossref Full Text | Google Scholar

Conraths F., Probst C., Possenti A., Boufana B., Saulle R., La Torre G., et al. (2017). Potential risk factors associated with human alveolar echinococcosis: Systematic review and meta-analysis. PLoS Negl. Trop. Dis. 11, 1–15. doi: 10.1371/journal.pntd.0005801

PubMed Abstract | Crossref Full Text | Google Scholar

Davey J., Hohenlohe P., Etter P., Boone J., Catchen J., and Blaxter M. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510. doi: 10.1038/nrg3012

PubMed Abstract | Crossref Full Text | Google Scholar

Deplazes P., Rinaldi L., Alvarez Rojas C., Torgerson P., Harandi M., Romig T., et al. (2017). Global distribution of alveolar and cystic echinococcosis. Adv. Parasitol. 95, 315–493. doi: 10.1016/bs.apar.2016.11.001

PubMed Abstract | Crossref Full Text | Google Scholar

Dyachenko V., Pantchev N., Gawlowska S., Vrhovec M. G., and Bauer C. (2008). Echinococcus multilocularis infections in domestic dogs and cats from Germany and other European countries. Veterinary Parasitol. 157, 244–253. doi: 10.1016/j.vetpar.2008.07.030

PubMed Abstract | Crossref Full Text | Google Scholar

Espinosa E., Bautista R., Larrosa R., and Plata O. (2024). Advancements in long-read genome sequencing technologies and algorithms. Genomics 116, 110842. doi: 10.1016/j.ygeno.2024.110842

PubMed Abstract | Crossref Full Text | Google Scholar

Excoffier L., Smouse P., and Quattro J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491. doi: 10.1093/genetics/131.2.479

PubMed Abstract | Crossref Full Text | Google Scholar

Furtado Jost R., Müller N., Marreros N., Moré G., Antoine L., Basso W., et al. (2023). What is the role of Swiss domestic cats in environmental contamination with Echinococcus multilocularis eggs? Parasit Vectors 16, 353. doi: 10.1186/s13071-023-05983-y

PubMed Abstract | Crossref Full Text | Google Scholar

Gesy K. and Jenkins E. (2015). Introduced and native haplotypes of echinococcus multilocularis in wildlife in Saskatchewan, Canada. J. Wildl Dis. 51, 743–748. doi: 10.7589/2014-08-214

PubMed Abstract | Crossref Full Text | Google Scholar

Gesy K., Schurer J., Massolo A., Liccioli S., Elkin B., Alisauskas R., et al. (2014). Unexpected diversity of the cestode Echinococcus multilocularis in wildlife in Canada. Int. J. Parasitol. Parasites Wildl 3, 81–87. doi: 10.1016/j.ijppaw.2014.03.002

PubMed Abstract | Crossref Full Text | Google Scholar

Gottstein B. and Mowatt M. (1991). Sequencing and characterization of an Echinococcus multilocularis DNA probe and its use in the polymerase chain reaction. Mol. Biochem. Parasitol. 44, 183–193. doi: 10.1016/0166-6851(91)90004-P

PubMed Abstract | Crossref Full Text | Google Scholar

Guo B., Guo G., Qi W., Aizezi M., Wu C., Tian M., et al. (2025). The genetic variation of mitochondrial sequences and pathological differences of Echinococcus multilocularis strains from different continents. Microbiol. Spectr. 13, e01318–e01324. doi: 10.1128/spectrum.01318-24

PubMed Abstract | Crossref Full Text | Google Scholar

Guo B., Wu C., Wang J., Wang W., Ren B., Yuan A., et al. (2024). The A2 haplotype of Echinococcus multilocularis is the predominant variant infecting humans and dogs in Yili Prefecture, Xinjiang. Infect. Genet. Evol. 119, 105581. doi: 10.1016/j.meegid.2024.105581

PubMed Abstract | Crossref Full Text | Google Scholar

Haag K., Zaha A., Araújo A., and Gottstein B. (1997). Reduced genetic variability within coding and non-coding regions of the Echinococcus multilocularis genome. Parasitology 115, 521–529. doi: 10.1017/s0031182097001649

PubMed Abstract | Crossref Full Text | Google Scholar

Hart R., Fokkema I., DiStefano M., Hastings R., Laros J., Taylor R., et al. (2024). HGVS Nomenclature 2024: improvements to community engagement, usability, and computability. Genome Med. 16, 149. doi: 10.1186/s13073-024-01421-5

PubMed Abstract | Crossref Full Text | Google Scholar

Hegglin D. and Deplazes P. (2013). Control of Echinococcus multilocularis: strategies, feasibility and cost-benefit analyses. Int. J. Parasitol. 43, 327–337. doi: 10.1016/j.ijpara.2012.11.013

PubMed Abstract | Crossref Full Text | Google Scholar

Heidari Z., Sharbatkhori M., Mobedi I., Mirhendi S., Nikmanesh B., Sharifdini M., et al. (2019). Echinococcus multilocularis and Echinococcus granulosus in canines in North-Khorasan Province, northeastern Iran, identified using morphology and genetic characterization of mitochondrial DNA. Parasit Vectors 12, 606. doi: 10.1186/s13071-019-3859-z

PubMed Abstract | Crossref Full Text | Google Scholar

Herzig M. (2019). Molekulare Typisierung von Echinococcus multilocularis-Isolaten aus Deutschland. Friedrich-Schiller-Universität, Fakultät für Biowissenschaften, Jena.

Google Scholar

Herzig M., Maksimov P., Staubach C., Romig T., Knapp J., Gottstein B., et al. (2021). Red foxes harbor two genetically distinct, spatially separated Echinococcus multilocularis clusters in Brandenburg, Germany. Parasit Vectors 14, 535. doi: 10.1186/s13071-021-05038-0

PubMed Abstract | Crossref Full Text | Google Scholar

Hifumi T., Tanaka T., Suzu I., Sato M., Akioka K., Fujimata C., et al. (2024). Molecular phylogenetic analysis of Echinococcus multilocularis from horses raised in Canada or Japan, using mitochondrial cytochrome b gene-targeted PCR. Food Waterborne Parasitol. 34, e00219. doi: 10.1016/j.fawpar.2024.e00219

PubMed Abstract | Crossref Full Text | Google Scholar

Jarošová J., Antolová D., Šnábel V., Guimarães N., Štofík J., Urban P., et al. (2020). The fox tapeworm, Echinococcus multilocularis, in grey wolves and dogs in Slovakia: epidemiology and genetic analysis. J. Helminthology 94, e168. doi: 10.1017/S0022149X20000528

PubMed Abstract | Crossref Full Text | Google Scholar

Kamiya M., Ooi H., Oku Y., Yagi K., and Ohbayashi M. (1985). Growth and development of Echinococcus multilocularis in experimentally infected cats. Japanese J. veterinary Res. 33, 135–140. doi: 10.14943/jjvr.33.3-4.135

Crossref Full Text | Google Scholar

Kapel C., Torgerson P., Thompson R., and Deplazes P. (2006). Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon dogs and cats. Int. J. Parasitol. 36, 79–86. doi: 10.1016/j.ijpara.2005.08.012

PubMed Abstract | Crossref Full Text | Google Scholar

Karamon J., Samorek-Pieróg M., Bilska-Zając E., Korpysa-Dzirba W., Sroka J., Bełcik A., et al. (2023). Echinococcus multilocularis genetic diversity based on isolates from pigs confirmed the characteristic haplotype distribution and the presence of the Asian-like haplotype in Central Europe. J. veterinary Res. 67, 567–574. doi: 10.2478/jvetres-2023-0056

PubMed Abstract | Crossref Full Text | Google Scholar

Karamon J., Sroka J., Dąbrowska J., Bilska-Zając E., Zdybel J., Kochanowski M., et al. (2019). First report of Echinococcus multilocularis in cats in Poland: A monitoring study in cats and dogs from a rural area and animal shelter in a highly endemic region. Parasites Vectors 12, 1–8. doi: 10.1186/s13071-019-3573-x

PubMed Abstract | Crossref Full Text | Google Scholar

Karamon J., Stojecki K., Samorek-Pierog M., Bilska-Zajac E., Rozycki M., Chmurzynska E., et al. (2017). Genetic diversity of Echinococcus multilocularis in red foxes in Poland: the first report of a haplotype of probable Asian origin. Folia Parasitologica 64, 1–6. doi: 10.14411/fp.2017.007

PubMed Abstract | Crossref Full Text | Google Scholar

Kim D. and Shaw A. (2021). Migration and tolerance shape host behaviour and response to parasite infection. J. Anim. Ecol. 90, 2315–2324. doi: 10.1111/1365-2656.13539

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Bart J.-M., Giraudoux P., Glowatzki M.-L., Breyer I., Raoul F., et al. (2009). Genetic diversity of the cestode Echinococcus multilocularis in red foxes at a continental scale in Europe. PLoS Negl. Trop. Dis. 3, e452–e452. doi: 10.1371/journal.pntd.0000452

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Bart J., Glowatzki M., Ito A., Gerard S., Maillard S., et al. (2007). Assessment of use of microsatellite polymorphism analysis for improving spatial distribution tracking of echinococcus multilocularis. J. Clin. Microbiol. 45, 2943–2950. doi: 10.1128/JCM.02107-06

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Combes B., Umhang G., Aknouche S., and Millon L. (2016). Could the domestic cat play a significant role in the transmission of Echinococcus multilocularis? A study based on qPCR analysis of cat feces in a rural area in France. Parasite 23, 42. doi: 10.1051/parasite/2016052

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Da Silva A., Courquet S., and Millon L. (2021a). Assessment of the genetic diversity of echinococcus multilocularis from copro-isolated eggs. Pathogens 10, 1296. doi: 10.3390/pathogens10101296

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Gottstein B., Bretagne S., Bart J.-M., Umhang G., Richou C., et al. (2020). Genotyping echinococcus multilocularis in human alveolar echinococcosis patients: an emsB microsatellite analysis. Pathogens 9, 1–21. doi: 10.3390/pathogens9040282

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Gottstein B., Saarma U., and Millon L. (2015). Taxonomy, phylogeny and molecular epidemiology of Echinococcus multilocularis: From fundamental knowledge to health ecology. Veterinary Parasitol. 213, 85–91. doi: 10.1016/j.vetpar.2015.07.030

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Guislain M., Bart J., Raoul F., Gottstein B., Giraudoux P., et al. (2008). Genetic diversity of Echinococcus multilocularis on a local scale. Infection Genet. Evol. 8, 367–373. doi: 10.1016/j.meegid.2008.02.010

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Meyer A., Courquet S., Millon L., Raoul F., Gottstein B., et al. (2021b). Echinococcus multilocularis genetic diversity in Swiss domestic pigs assessed by EmsB microsatellite analyzes. Veterinary Parasitol. 293, 109429. doi: 10.1016/j.vetpar.2021.109429

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Staebler S., Bart J., Stien A., Yoccoz N., Drögemüller C., et al. (2012). Echinococcus multilocularis in Svalbard, Norway: microsatellite genotyping to investigate the origin of a highly focal contamination. Infect. Genet. Evol. 12, 1270–1274. doi: 10.1016/j.meegid.2012.03.008

PubMed Abstract | Crossref Full Text | Google Scholar

Knapp J., Umhang G., Wahlström H., Al-Sabi M., Ågren E., and Enemark H. (2019). Genetic diversity of Echinococcus multilocularis in red foxes from two Scandinavian countries: Denmark and Sweden. Food Waterborne Parasitol. 14, e00045. doi: 10.1016/j.fawpar.2019.e00045

PubMed Abstract | Crossref Full Text | Google Scholar

Konyaev S., Yanagida T., Nakao M., Ingovatova G., Shoykhet Y., Bondarev A., et al. (2013). Genetic diversity of Echinococcus spp. in Russia. Parasitology 140, 1637–1647. doi: 10.1017/S0031182013001340

PubMed Abstract | Crossref Full Text | Google Scholar

Lallemand S., Oyhenart J., Valot B., Borne R., Bohard L., Umhang G., et al. (2024). Challenging the phylogenetic relationships among Echinococcus multilocularis isolates from main endemic areas. Int. J. Parasitol. 54, 569–582. doi: 10.1016/j.ijpara.2024.05.004

PubMed Abstract | Crossref Full Text | Google Scholar

Leuckart R. (1863). Die menschlichen Parasiten und die von ihnen herrührenden Krankheiten. Ein Hand- und Lehrbuch für Naturforscher und Aerzte (Leipzig: C.F. Winter’sche Verlagshandlung).

Google Scholar

Li J.-Q., Li L., Fan Y.-L., Fu B.-Q., Zhu X., Yan H.-B., et al. (2018). Genetic diversity in echinococcus multilocularis from the plateau vole and plateau pika in Jiuzhi County, Qinghai Province, China. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.02632

PubMed Abstract | Crossref Full Text | Google Scholar

Lundström-Stadelmann B., Rostami A., Frey C., Torgerson P., Riahi S., Bagheri K., et al. (2025). Human alveolar echinococcosis-global, regional, and national annual incidence and prevalence rates. Clin. Microbiol. infection 31, 1139–1145. doi: 10.1016/j.cmi.2025.01.034

PubMed Abstract | Crossref Full Text | Google Scholar

Ma J., Wang H., Lin G., Craig P., Ito A., Cai Z., et al. (2012). Molecular identification of Echinococcus species from eastern and southern Qinghai, China, based on the mitochondrial cox1 gene. Parasitol. Res. 111, 179–184. doi: 10.1007/s00436-012-2815-z

PubMed Abstract | Crossref Full Text | Google Scholar

Martini M., Dumendiak S., Gagliardo A., Ragazzini F., La Rosa L., Giunchi D., et al. (2022). Echinococcus multilocularis and other taeniid metacestodes of muskrats in Luxembourg: prevalence, risk factors, parasite reproduction, and genetic diversity. Pathogens 11, 1414. doi: 10.3390/pathogens11121414

PubMed Abstract | Crossref Full Text | Google Scholar

Maxam A. and Gilbert W. (1977). A new method for sequencing DNA. Proc. Natl. Acad. Sci. U.S.A. 74, 560–564. doi: 10.1073/pnas.74.2.560

PubMed Abstract | Crossref Full Text | Google Scholar

McNulty S., Mann P., Robinson J., Duncavage E., and Pfeifer J. (2020). Impact of reducing DNA input on next-generation sequencing library complexity and variant detection. J. Mol. diagnostics 22, 720–727. doi: 10.1016/j.jmoldx.2020.02.003

PubMed Abstract | Crossref Full Text | Google Scholar

Mohammadi M. and Harandi M. (2024). Revisiting genetic diversity in Echinococcus multilocularis, the role for EmsB microsatellite: A commentary. Infect. Genet. Evol. 119, 105580. doi: 10.1016/j.meegid.2024.105580

PubMed Abstract | Crossref Full Text | Google Scholar

Nakao M., Li T., Han X., Ma X., Xiao N., Qiu J., et al. (2010a). Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences. Int. J. Parasitol. 40, 379–385. doi: 10.1016/j.ijpara.2009.09.006

PubMed Abstract | Crossref Full Text | Google Scholar

Nakao M., Sako Y., and Ito A. (2003). Isolation of polymorphic microsatellite loci from the tapeworm Echinococcus multilocularis. Infection Genet. Evol. 3, 159–163. doi: 10.1016/S1567-1348(03)00070-4

PubMed Abstract | Crossref Full Text | Google Scholar

Nakao M., Xiao N., Okamoto M., Yanagida T., Sako Y., and Ito A. (2009). Geographic pattern of genetic variation in the fox tapeworm Echinococcus multilocularis. Parasitol. Int. 58, 384–389. doi: 10.1016/j.parint.2009.07.010

PubMed Abstract | Crossref Full Text | Google Scholar

Nakao M., Yanagida T., Okamoto M., Knapp J., Nkouawa A., Sako Y., et al. (2010b). State-of-the-art Echinococcus and Taenia: phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infect. Genet. Evol. 10, 444–452. doi: 10.1016/j.meegid.2010.01.011

PubMed Abstract | Crossref Full Text | Google Scholar

Nakao M., Yokoyama N., Sako Y., Fukunaga M., and Ito A. (2002). The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion 1, 497–509. doi: 10.1016/S1567-7249(02)00040-5

PubMed Abstract | Crossref Full Text | Google Scholar

Nikendei C., Greinacher A., Cranz A., Friederich H.-C., Stojkovic M., and Berkunova A. (2023). Understanding Alveolar echinococcosis patients’ psychosocial burden and coping strategies-A qualitative interview study. PLoS Negl. Trop. Dis. 17, e0011467. doi: 10.1371/journal.pntd.0011467

PubMed Abstract | Crossref Full Text | Google Scholar

Okamoto M., Bessho Y., Kamiya M., Kurosawa T., and Horii T. (1995). Phylogenetic relationships within Taenia taeniaeformis variants and other taeniid cestodes inferred from the nucleotide sequence of the cytochrome c oxidase subunit I gene. Parasitol.Res. 81, 451–458. doi: 10.1007/BF00931785

PubMed Abstract | Crossref Full Text | Google Scholar

Okamoto M., Oku Y., Kurosawa T., and Kamiya M. (2007). Genetic uniformity of Echinococcus multilocularis collected from different intermediate host species in Hokkaido, Japan. J. Vet. Med. Sci. 69, 159–163. doi: 10.1292/jvms.69.159

PubMed Abstract | Crossref Full Text | Google Scholar

Oksanen A., Siles-Lucas M., Karamon J., Possenti A., Conraths F., Romig T., et al. (2016). The geographical distribution and prevalence of Echinococcus multilocularis in animals in the European Union and adjacent countries: a systematic review and meta-analysis. Parasit Vectors 9, 519. doi: 10.1186/s13071-016-1746-4

PubMed Abstract | Crossref Full Text | Google Scholar

Pedroza Matute S. and Iyavoo S. (2025). Implementation of NGS and SNP microarrays in routine forensic practice: opportunities and barriers. BMC Genomics 26, 541. doi: 10.1186/s12864-025-11723-6

PubMed Abstract | Crossref Full Text | Google Scholar

Petavy A., Tenora F., Deblock S., and Sergent V. (2000). Echinococcus multilocularis in domestic cats in France: A potential risk factor for alveolar hydatid disease contamination in humans. Veterinary Parasitol. 87, 151–156. doi: 10.1016/S0304-4017(99)00181-8

PubMed Abstract | Crossref Full Text | Google Scholar

Phan L., Zhang H., Wang Q., Villamarin R., Hefferon T., Ramanathan A., et al. (2025). The evolution of dbSNP: 25 years of impact in genomic research. Nucleic Acids Res. 53, D925–D931. doi: 10.1093/nar/gkae977

PubMed Abstract | Crossref Full Text | Google Scholar

Polish L., O’Connell E., Barth T., Gottstein B., Zajac A., Gibson P., et al. (2022). European haplotype of echinococcus multilocularis in the United States. N Engl. J. Med. 387, 1902–1904. doi: 10.1056/NEJMc2210000

PubMed Abstract | Crossref Full Text | Google Scholar

Rachel F., Luttermann C., Höper D., Conraths F., Dapprich J., and Maksimov P. (2025). Typing of Echinococcus multilocularis by Region-Specific Extraction and Next-Generation Sequencing of the mitogenome. Front. Microbiol. 16. doi: 10.3389/fmicb.2025.1535628

PubMed Abstract | Crossref Full Text | Google Scholar

Rausch R. (1967). “On the ecology and distribution of echinococcus spp,” in (Cestoda: taeniidae) and Characteristics of Develpment in the Intermediate Host. Ed. Harold W. (Paris, France: Manter Laboratory of Parasitology: Faculty and Staff Publications). 42 (1), 19–63

Google Scholar

Rinder H., Rausch R., Takahashi K., Kopp H., Thomschke A., and Löscher T. (1997). Limited range of genetic variation in Echinococcus multilocularis. J. Parasitol. 83, 1045–1050. doi: 10.2307/3284359

PubMed Abstract | Crossref Full Text | Google Scholar

Romig T., Deplazes P., Jenkins D., Giraudoux P., Massolo A., Craig P., et al. (2017). “Chapter five - ecology and life cycle patterns of echinococcus species,” in Echinococcus and Echinococcosis, Part A. Eds. Thompson R. C. A., Deplazes P., and Lymbery A. J. (London, United Kingdom: Academic Press), 213–314.

PubMed Abstract | Google Scholar

Romig T. and Wassermann M. (2024). Echinococcus species in wildlife. Int. J. Parasitol. Parasites Wildl 23, 100913. doi: 10.1016/j.ijppaw.2024.100913

PubMed Abstract | Crossref Full Text | Google Scholar

Sacheli R., Knapp J., Pholien C., Egrek S., Léonard P., Giot J.-B., et al. (2023). Genetic diversity of Echinococcus multilocularis specimens isolated from Belgian patients with alveolar echinococcosis using EmsB microsatellites analysis. Infect. Genet. Evol. 116, 105531. doi: 10.1016/j.meegid.2023.105531

PubMed Abstract | Crossref Full Text | Google Scholar

Saiki R., Scharf S., Faloona F., Mullis K., Horn G., Erlich H., et al. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354. doi: 10.1126/science.2999980

PubMed Abstract | Crossref Full Text | Google Scholar

Sanger F., Coulson A., Barrell B., Smith A., and Roe B. (1980). Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143, 161–178. doi: 10.1016/0022-2836(80)90196-5

PubMed Abstract | Crossref Full Text | Google Scholar

Sanger F., Nicklen S., and Coulson A. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467. doi: 10.1073/pnas.74.12.5463

PubMed Abstract | Crossref Full Text | Google Scholar

Santa M., Rezansoff A., Chen R., Gilleard J., Musiani M., Ruckstuhl K., et al. (2021). Deep amplicon sequencing highlights low intra-host genetic variability of Echinococcus multilocularis and high prevalence of the European-type haplotypes in coyotes and red foxes in Alberta, Canada. PLoS Negl. Trop. Dis. 15, e0009428. doi: 10.1371/journal.pntd.0009428

PubMed Abstract | Crossref Full Text | Google Scholar

Santa M., Umhang G., Klein C., Grant D., Ruckstuhl K., Musiani M., et al. (2023). It’s a small world for parasites: evidence supporting the North American invasion of European Echinococcus multilocularis. Proc. Biol. Sci. 290, 20230128. doi: 10.1098/rspb.2023.0128

PubMed Abstract | Crossref Full Text | Google Scholar

Santoro A., Santolamazza F., Cacciò S., La Rosa G., Antolová D., Auer H., et al. (2024). Mitochondrial genetic diversity and phylogenetic relationships of Echinococcus multilocularis in Europe. Int. J. Parasitol 54, 233–245. doi: 10.1016/j.ijpara.2024.01.003

PubMed Abstract | Crossref Full Text | Google Scholar

Satam H., Joshi K., Mangrolia U., Waghoo S., Zaidi G., Rawool S., et al. (2023). Next-generation sequencing technology: current trends and advancements. Biology 12, 997. doi: 10.3390/biology12070997

PubMed Abstract | Crossref Full Text | Google Scholar

Satam H., Joshi K., Mangrolia U., Waghoo S., Zaidi G., Rawool S., et al. (2024). Correction: Satam et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 12, 997. doi: 10.3390/biology13050286

PubMed Abstract | Crossref Full Text | Google Scholar

Schneider C., Kratzer W., Binzberger A., Schlingeloff P., Baumann S., Romig T., et al. (2023). Echinococcus multilocularis and other zoonotic helminths in red foxes (Vulpes vulpes) from a southern German hotspot for human alveolar echinococcosis. Parasit Vectors 16, 425. doi: 10.1186/s13071-023-06026-2

PubMed Abstract | Crossref Full Text | Google Scholar

Schurer J., Gesy K., Elkin B., and Jenkins E. (2014). Echinococcus multilocularis and Echinococcus canadensis in wolves from western Canada. Parasitology 141, 159–163. doi: 10.1017/S0031182013001716

PubMed Abstract | Crossref Full Text | Google Scholar

Shang J.-Y., Zhang G.-J., Liao S., Yu W.-J., He W., Wang Q., et al. (2021). Low genetic variation in Echinococcus multilocularis from the Western Sichuan Plateau of China revealed by microsatellite and mitochondrial DNA markers. Acta Tropica 221, 105989. doi: 10.1016/j.actatropica.2021.105989

PubMed Abstract | Crossref Full Text | Google Scholar

Simoncini A. and Massolo A. (2024). Multiscale ecological drivers of Echinococcus multilocularis spatial distribution in wild hosts: A systematic review. Food Waterborne Parasitol. 34, e00216. doi: 10.1016/j.fawpar.2023.e00216

PubMed Abstract | Crossref Full Text | Google Scholar

Šnábel V., Antolová D., Cavallero S., and D’Amelio S. (2020). On the geographic genetic variants of the cestode Echinococcus multilocularis with reference to the original descriptions from Bowles et al., (1992) and Bowles and McManus, (1993), and their use. Parasitol. Int. 75, 102039. doi: 10.1016/j.parint.2019.102039

PubMed Abstract | Crossref Full Text | Google Scholar

Spotin A., Boufana B., Ahmadpour E., Casulli A., Mahami-Oskouei M., Rouhani S., et al. (2018). Assessment of the global pattern of genetic diversity in Echinococcus multilocularis inferred by mitochondrial DNA sequences. Veterinary Parasitol. 262, 30–41. doi: 10.1016/j.vetpar.2018.09.013

PubMed Abstract | Crossref Full Text | Google Scholar

Staubach C., Thulke H., Tackmann K., Hugh-Jones M., and Conraths F. (2001). Geographic information system-aided analysis of factors associated with the spatial distribution of Echinococcus multilocularis infections of foxes. Am. J. Trop. Med. Hygiene 65, 943–948. doi: 10.4269/ajtmh.2001.65.943

PubMed Abstract | Crossref Full Text | Google Scholar

Tajima F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595. doi: 10.1093/genetics/123.3.585

PubMed Abstract | Crossref Full Text | Google Scholar

Thompson R. (2017). “Biology and systematics of echinococcus,” in Echinococcus and Echinococcosis, Part A. Eds. Thompson R. C. A., Deplazes P., and Lymbery A. J. (London, United Kingdom: Academic Press), 65–109.

Google Scholar

Thompson R. (2020). The molecular epidemiology of echinococcus infections. Pathogens 9, 1–9. doi: 10.3390/pathogens9060453

PubMed Abstract | Crossref Full Text | Google Scholar

Thompson R., Deplazes P., and Eckert J. (2003). Observations on the development of echinococcus multilocularis in cats. J. Parasitol. 89, 1086–1088. doi: 10.1645/GE-3150RN

PubMed Abstract | Crossref Full Text | Google Scholar

Thompson R., Kapel C., Hobbs R., and Deplazes P. (2006). Comparative development of Echinococcus multilocularis in its definitive hosts. Parasitology 132, 709–716. doi: 10.1017/S0031182005009625

PubMed Abstract | Crossref Full Text | Google Scholar

Uakhit R., Smagulova A., Syzdykova A., Abdrakhmanov S., and Kiyan V. (2022). Genetic diversity of Echinococcus spp. in wild carnivorous animals in Kazakhstan. Vet. World 15, 1489–1496. doi: 10.14202/vetworld.2022.1489-1496

PubMed Abstract | Crossref Full Text | Google Scholar

Umhang G., Bastien M., Bastid V., Poulle M.-L., and Boué F. (2022). High variability in the number of E. multilocularis eggs in cat feces collected in the field. Parasitol. Int. 89, 102583. doi: 10.1016/j.parint.2022.102583

PubMed Abstract | Crossref Full Text | Google Scholar

Umhang G., Demerson J.-M., Legras L., Boucher J.-M., Peytavin de Garam C., Bastid V., et al. (2021a). Rodent control programmes can integrate Echinococcus multilocularis surveillance by facilitating parasite genotyping: the case of Arvicola terrestris voles screening in France. Z. für Parasitenkunde 120, 1903–1908. doi: 10.1007/s00436-021-07126-7

PubMed Abstract | Crossref Full Text | Google Scholar

Umhang G., Forin-Wiart M.-A., Hormaz V., Caillot C., Boucher J.-M., Poulle M.-L., et al. (2015). Echinococcus multilocularis detection in the intestines and feces of free-ranging domestic cats (Felis s. catus) and European wildcats (Felis s. silvestris) from northeastern France. Veterinary Parasitol. 214, 75–79. doi: 10.1016/j.vetpar.2015.06.006

PubMed Abstract | Crossref Full Text | Google Scholar

Umhang G., Karamon J., Hormaz V., Knapp J., Cencek T., and Boué F. (2017). A step forward in the understanding of the presence and expansion of Echinococcus multilocularis in Eastern Europe using microsatellite EmsB genotyping in Poland. Infect. Genet. Evol. 54, 176–182. doi: 10.1016/j.meegid.2017.07.004

PubMed Abstract | Crossref Full Text | Google Scholar

Umhang G., Knapp J., Hormaz V., Raoul F., and Boué F. (2014). Using the genetics of Echinococcus multilocularis to trace the history of expansion from an endemic area. Infection Genet. Evol. 22, 142–149. doi: 10.1016/j.meegid.2014.01.018

PubMed Abstract | Crossref Full Text | Google Scholar

Umhang G., Knapp J., Wassermann M., Bastid V., Peytavin de Garam C., Boué F., et al. (2021b). Asian admixture in european echinococcus multilocularis populations: new data from Poland comparing emsB microsatellite analyses and mitochondrial sequencing. Front. Veterinary Sci. 7. doi: 10.3389/fvets.2020.620722

PubMed Abstract | Crossref Full Text | Google Scholar

Valot B., Knapp J., Umhang G., Grenouillet F., and Millon L. (2015). Genomic characterization of EmsB microsatellite loci in Echinococcus multilocularis. Infection Genet. Evol. 32, 338–341. doi: 10.1016/j.meegid.2015.03.040

PubMed Abstract | Crossref Full Text | Google Scholar

van Herwerden L., Gasser R., and Blair D. (2000). ITS-1 ribosomal DNA sequence variants are maintained in different species and strains of Echinococcus. Int. J. Parasitol. 30, 157–169. doi: 10.1016/S0020-7519(00)00002-3

PubMed Abstract | Crossref Full Text | Google Scholar

Virchow R. (1855). Die multiloculäre, ulcerirende Echinokokkengeschwulst der Leber. Verhandlungen der Physikalisch-Medizinischen Gesellschaft zu Würzburg 6, 84–95. Available online at: http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/13560.

Google Scholar

Vogel H. (1957). Über den Echinococcus multilocularis Süddeutschlands I. Das Bandwurmstadium von Stämmen menschlicher und tierischer Herkunft (Echinococcus multilocularis in South Germany. I. The tapeworm stage of strains from humans and animals). Z. für Tropenmedizin und Parasitologie 8, 404–454.

Google Scholar

Vogel M., Müller N., Gottstein B., Flury K., Eckert J., and Seebeck T. (1990). Echinococcus multilocularis: characterization of a DNA probe. Acta Tropica 48, 109–116. doi: 10.1016/0001-706x(90)90050-a

PubMed Abstract | Crossref Full Text | Google Scholar

von Nickisch-Rosenegk M., Lucius R., and Loos-Frank B. (1999). Contributions to the phylogeny of the cyclophyllidea (Cestoda) inferred from mitochondrial 12S rDNA. J. Mol. Evol. 48, 586–596. doi: 10.1007/PL00006501

PubMed Abstract | Crossref Full Text | Google Scholar

Vuitton D., Demonmerot F., Knapp J., Richou C., Grenouillet F., Chauchet A., et al. (2015). Clinical epidemiology of human AE in Europe. Veterinary Parasitol. 213, 110–120. doi: 10.1016/j.vetpar.2015.07.036

PubMed Abstract | Crossref Full Text | Google Scholar

Vuitton D., McManus D., Rogan M., Romig T., Gottstein B., Naidich A., et al. (2020). International consensus on terminology to be used in the field of echinococcoses. Parasite 27, 1–41. doi: 10.1051/parasite/2020024

PubMed Abstract | Crossref Full Text | Google Scholar

Wang B., Zhao L., Ban W., Zhang X., Quan C., Teliewuhan M., et al. (2024). Investigation and genetic polymorphism analysis of rodents infected with Echinococcus in Ili Prefecture, Xinjiang Uygur Autonomous Region, China. Front. Cell. Infect. Microbiol. 14. doi: 10.3389/fcimb.2024.1433359

PubMed Abstract | Crossref Full Text | Google Scholar

Wen H., Vuitton L., Tuxun T., Li J., Vuitton D., Zhang W., et al. (2019). Echinococcosis: advances in the 21st century. Clin. Microbiol. Rev. 32, 1–39. doi: 10.1128/CMR.00075-18

PubMed Abstract | Crossref Full Text | Google Scholar

Woolsey I. and Miller A. (2021). Echinococcus granulosus sensu lato and Echinococcus multilocularis: A review. Res. Veterinary Sci. 135, 517–522. doi: 10.1016/j.rvsc.2020.11.010

PubMed Abstract | Crossref Full Text | Google Scholar

Keywords: Echinococcus multilocularis, genotyping, genetic diversity, methods, minireview

Citation: Rachel F, Conraths FJ and Maksimov P (2025) Genetic diversity and genotyping of Echinococcus multilocularis: a minireview. Front. Parasitol. 4:1721690. doi: 10.3389/fpara.2025.1721690

Received: 09 October 2025; Accepted: 18 November 2025; Revised: 06 November 2025;
Published: 05 December 2025.

Edited by:

Klaus Brehm, Julius Maximilian University of Würzburg, Germany

Reviewed by:

Jenny Knapp, Centre Hospitalier Universitaire de Besançon, France

Copyright © 2025 Rachel, Conraths and Maksimov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Franziska Rachel, RnJhbnppc2thLlJhY2hlbEBmbGkuZGU=; Pavlo Maksimov, UGF2bG8uTWFrc2ltb3ZAZ21haWwuY29t

ORCID: Franziska Rachel, orcid.org/0000-0001-6530-8645
Franz Josef Conraths, orcid.org/0000-0002-7400-9409
Pavlo Maksimov, orcid.org/0000-0002-9457-0658

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.