ORIGINAL RESEARCH article

Front. Bee Sci.

Sec. Bees in Pollination

Volume 3 - 2025 | doi: 10.3389/frbee.2025.1510451

This article is part of the Research TopicWomen in Bee ScienceView all 5 articles

Climate change will lead to local extinctions and mismatched range contractions disrupting bee-dependent crop pollination

Provisionally accepted
  • 1Federal University of Pernambuco, Recife, Brazil
  • 2University of East Anglia, Norwich, England, United Kingdom

The final, formatted version of the article will be published soon.

Climate change is one of the main drivers of biological reorganization, population decline of pollinators, and disruption of species interactions. These impacts represent a major threat to crop pollination and human food security. Here, we tested the hypothesis that the spatial mismatches between Neotropical food plant species and their bee pollinators are exacerbated under scenarios of projected climate change. To investigate this hypothesis we performed species distribution modelling to simulate the effects of climate change on suitable habitats for the occurrence of both native food plants and their main pollinators. We selected three economically important food plants native to Brazil bearing a self-incompatible reproductive system that is strictly dependent on pollinators: (1) Bertholletia excelsa, (2) Eugenia uniflora, and (3) Passiflora edulis; and we selected the main effective bee pollinators of each plant species: (1) Apis mellifera (i.e., pollinator of E. uniflora), (2) Eulaema mocsaryi (i.e., pollinator of B. excelsa), and (3) Xylocopa frontalis (i.e., pollinator of P. edulis). We documented that climate change will likely distinctly affect areas of suitable habitats for food plants and their main bee pollinators across Brazil, in which all species will likely experience contractions in their ecological niches. In addition, we also documented that suitable habitats were reduced for the co-occurrence of all food plants and their pollinators. Specifically, 51.5% for P. edulis and X. frontalis, 76% for B. excelsa and E. mocsaryi, and 54% for E. uniflora and A. mellifera. Therefore, these findings underscore that plausible climate change scenarios can act as a potential driver of spatial mismatches between food plants and their main pollinators, disrupting the pollination of these food plants. Our results show that plant and pollinator species respond negatively to the impacts of climate change under all scenarios, which can result in alarming projections for strictly bee-pollinated self-incompatible plant species. This study reaffirms that bees are sensitive to climate change, highlighting the negative impact even for the exotic European honeybee, Apis mellifera. Finally, climate change could impact crop pollination, with detrimental implications for food production and food security.

Keywords: Apis mellifera, Brazil-nut, Food plants, Food security, distribution modelling, mismatched mutualism, Passion fruit, Pitanga

Received: 13 Oct 2024; Accepted: 05 May 2025.

Copyright: © 2025 Oliveira, Cruz-Neto, Silva, Tabarelli, Peres and Lopes. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Ariadna Valentina Lopes, Federal University of Pernambuco, Recife, Brazil

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.