REVIEW article
Front. Bioeng. Biotechnol.
Sec. Biomaterials
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1602259
This article is part of the Research TopicBiomaterials, 3D printing technologies, and perspectives for bone and cartilage regenerationView all articles
Hydrogel Applications: A Promising Frontier in Pneumonia Therapy
Provisionally accepted- Jinshan Hospital, Fudan University, Shanghai, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Pneumonia remains a significant global health challenge due to its high incidence, mortality rates, and the limitations of conventional therapies, such as antibiotic resistance and inefficient drug delivery. In recent years, hydrogels have emerged as a promising biomaterial platform for pneumonia treatment, offering exceptional biocompatibility, tunable physicochemical properties, and multifunctionality. This review comprehensively examines the recent advancements in hydrogel applications for pneumonia therapy. It focuses on their roles as drug delivery vehicles, anti-inflammatory agents, and facilitators of tissue repair and regeneration. Hydrogels enable targeted and sustained release of antibiotics, anti-inflammatory drugs, and bioactive molecules, enhancing local drug concentrations while minimizing systemic side effects. Their ability to mimic the extracellular matrix (ECM) supports lung tissue repair and regeneration, addressing the long-term complications of pneumonia, such as fibrosis. Additionally, hydrogels can be engineered to respond to specific physiological conditions, such as pH or enzyme activity, allowing for intelligent drug release profiles tailored to the pulmonary microenvironment. Despite these promising developments, challenges related to material safety, drug loading efficiency, and scalability of manufacturing processes must be addressed to facilitate clinical translation. This review highlights the therapeutic potential of hydrogels in pneumonia treatment and provides insights into future research directions, aiming to bridge the gap between laboratory innovations and clinical applications.
Keywords: Pneumonia, Hydrogels, Drug delivery, Biocompatibility, Intelligent responsiveness
Received: 29 Mar 2025; Accepted: 12 Jun 2025.
Copyright: © 2025 Wang, Wang, Liao and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Daikun He, Jinshan Hospital, Fudan University, Shanghai, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.