Your new experience awaits. Try the new design now and help us make it even better

ORIGINAL RESEARCH article

Front. Bioeng. Biotechnol.

Sec. Biomechanics

Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1624892

This article is part of the Research TopicBiomechanics, technology, and athletic performance: pathways to sustainable healthView all articles

Biomechanical Impacts of 3D Arch-support Insoles on Countermovement Jumps: A Statistical Parametric Mapping Analysis

Provisionally accepted
  • 1Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
  • 2Research Institute for Sports Science and Technology, Hong Kong, China
  • 3Wuhan Sports University, Wuhan, China
  • 4Southwest University, Chongqing, China

The final, formatted version of the article will be published soon.

Despite the widespread use of arch-support insoles in sports, their time-dependent biomechanical effects on dynamic movements like countermovement jumps (CMJs) remain poorly understood. This study investigated the biomechanical impacts of three-dimensional (3D) arch-support insoles with varying degrees of stiffness on CMJs by using a statistical parametric mapping (SPM) analysis. Design Randomized crossover study. Method Twelve active male university students tested three different polyurethane 3D arch-support insoles (i.e., soft, semi-rigid, and rigid insoles). A total of 16 reflective markers were placed on the lower limbs of the participants according to the Vicon Plug-in Gait marker set protocols. The lower limb kinematics and kinetics were captured by using two synchronized force plates and an eight-camera motion analysis system. SPM was used to statistically compare the biomechanical changes across the different 3D insoles during six continuous key phases of CMJs.With the 3D arch-support insoles donned, supra-threshold clusters of the ankle kinematics in the sagittal and frontal planes exceeded the critical thresholds during propulsion-flight (p = 0.022) and the landing (p = 0.033). Ankle moment in the transverse direction exceeded the critical threshold of 6.46 during propulsion (p = 0.038) and landing (p < 0.001). The critical threshold of 6.555 was exceeded for propulsion (p = 0.050) and landing (p < 0.001) with suprathreshold clusters for the force in the frontal plane of the knee. Ankle force in the transverse direction showed that the supra-threshold clusters exceeded the critical threshold during weighing-unweighting (p < 0.001), and early landing (p = 0.007).Rigid and semi-rigid 3D arch-support insoles significantly altered the biomechanics of the ankle joint, primarily in the frontal and transverse planes during propulsion-flight, and the landing phases. The rigid 3D insole most effectively enhanced ankle joint stability, which is crucial for maintaining balance and preventing injuries. SPM provided a time-dependent analysis of the biomechanical impacts during CMJ.

Keywords: Arch-support, 3D insole, orthoses, statistical parametric mapping, Jumping

Received: 08 May 2025; Accepted: 11 Aug 2025.

Copyright: © 2025 Shi, Yick, Huang, Li and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Qiu-qiong Shi, Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.