ORIGINAL RESEARCH article

Front. Bioinform.

Sec. Drug Discovery in Bioinformatics

Volume 5 - 2025 | doi: 10.3389/fbinf.2025.1579865

TICTAC: Target Illumination Clinical Trial Analytics with Cheminformatics

Provisionally accepted
  • University of New Mexico, Albuquerque, United States

The final, formatted version of the article will be published soon.

Introduction: Identifying disease–target associations is a pivotal step in drug discovery, offering insights that guide the development and optimization of therapeutic interventions. Clinical trial data serves as a valuable source for inferring these associations. However, issues such as inconsistent data quality and limited interpretability pose significant challenges. To overcome these limitations, an integrated approach is required that consolidates evidence from diverse data sources to support the effective prioritization of biological targets for further research.Methods: We developed a comprehensive data integration and visualization pipeline to infer and evaluate associations between diseases and known and potential drug targets. This pipeline integrates clinical trial data with standardized metadata, providing an analytical workflow that enables the exploration of diseases linked to specific drug targets as well as facilitating the discovery of drug targets associated with specific diseases. The pipeline employs robust aggregation techniques to consolidate multivariate evidence from multiple studies, leveraging harmonized datasets to ensure consistency and reliability. Disease–target associations are systematically ranked and filtered using a rational scoring framework that assigns confidence scores derived from aggregated statistical metrics.Results: Our pipeline evaluates disease–target associations by linking protein-coding genes to diseases and incorporates a confidence assessment method based on aggregated evidence. Metrics such as meanRank scores are employed to prioritize associations, enabling researchers to focus on the most promising hypotheses. This systematic approach streamlines the identification and prioritization of biological targets, enhancing hypothesis generation and evidence-based decision-making.Discussion: This innovative pipeline provides a scalable solution for hypothesis generation, scoring, and ranking in drug discovery. As an open-source tool, it is equipped with publicly available datasets and designed for ease of use by researchers. The platform empowers scientists to make data-driven decisions in the prioritization of biological targets, facilitating the discovery of novel therapeutic opportunities.

Keywords: Disease-Target 1, Drug Discovery 2, Hypothesis generation 3, Clinical trial data 4, Inference 5

Received: 19 Feb 2025; Accepted: 16 May 2025.

Copyright: © 2025 Abok, Edwards and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Jeremy J Yang, University of New Mexico, Albuquerque, United States

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.