REVIEW article
Front. Dent. Med.
Sec. Systems Integration
Volume 6 - 2025 | doi: 10.3389/fdmed.2025.1612441
This article is part of the Research TopicRevolutionizing Dentistry: The Impact of AI and new Algorithms on Diagnostics, Treatment, and Patient EngagementView all 3 articles
AI-Driven Dynamic Orthodontic Treatment Management: Personalized Progress Tracking and Adjustments-A Narrative Review
Provisionally accepted- 1Shandong University, Jinan, China
- 2Sichuan University, Chengdu, Sichuan Province, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Artificial intelligence (AI) is reconfiguring the orthodontic treatment paradigm through dynamic data-driven strategies. In this paper, we systematically review the multidimensional applications of AI in personalized treatment tracking, real-time decision support, and risk prediction, and reveal its core mechanisms to enhance clinical efficacy and patient experience. This review will focus on the fusion of AI-driven multimodal data analysis (e.g., cone-beam CT, intraoral scanning, and 3D facial images) and deep learning algorithms (e.g., convolutional neural networks) to elucidate the technological breakthroughs in key aspects such as tooth movement trajectory prediction and early detection of root resorption. Clinical practice has shown that AI has formed a complete closed loop of clinical application by optimizing the process of treatment plan development, realizing dynamic adjustment mechanisms, and enhancing patient compliance based on mobile medical platforms. Current research still needs to address core issues such as data privacy protection framework, algorithm interpretability enhancement, and multi-center validation. With the integration of interdisciplinary technology and the deepening of the research and development of intelligent orthodontic systems, AI will promote orthodontic diagnosis and treatment in the direction of more accuracy and personalization and ultimately realize the dual innovation of clinical decision-making mode and patient management strategy.
Keywords: Orthodontics, Digital treatment simulation, artificial intelligence, Convolutional Neural Networks, patient engagement
Received: 15 Apr 2025; Accepted: 16 Jul 2025.
Copyright: © 2025 Guo and Shao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Xuanchi Guo, Shandong University, Jinan, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.