You're viewing our updated article page. If you need more time to adjust, you can return to the old layout.

SYSTEMATIC REVIEW article

Front. Mar. Sci., 22 July 2022

Sec. Marine Biology

Volume 9 - 2022 | https://doi.org/10.3389/fmars.2022.846558

Epibiotic Fauna on Cetaceans Worldwide: A Systematic Review of Records and Indicator Potential

  • Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain

Article metrics

View details

23

Citations

6,9k

Views

1,8k

Downloads

Abstract

Each individual cetacean is an ecosystem itself, potentially harboring a great variety of animals that travel with it. Despite being often despised or overlooked, many of these epizoites have been proven to be suitable bio-indicators of their cetacean hosts, informing on health status, social interactions, migration patterns, population structure or phylogeography. Moreover, epizoites are advantageous over internal parasites in that many of them can be detected by direct observation (e.g., boat surveys), thus no capture or dissection of cetaceans are necessary. Previous reviews of epizoites of cetaceans have focused on specific geographical areas, cetacean species or epibiotic taxa, but fall short to include the increasing number of records and scientific findings about these animals. Here we present an updated review of all records of associations between cetaceans and their epibiotic fauna (i.e., commensals, ecto- or mesoparasites, and mutualists). We gathered nearly 500 publications and found a total of 58 facultative or obligate epibiotic taxa from 11 orders of arthropods, vertebrates, cnidarians, and a nematode that are associated to the external surface of 66 cetacean species around the globe. We also provide information on the use as an indicator species in the literature, if any, and about other relevant traits, such as geographic range, host specificity, genetic data, and life-cycle. We encourage researchers, not only to provide quantitative data (i.e., prevalence, abundance) on the epizoites they find on cetaceans, but also to inform on their absence. The inferences drawn from epizoites can greatly benefit conservation plans of both cetaceans and their epizoites.

Introduction

General Features of Epibiosis in Cetaceans

Cetaceans have developed a number of symbiotic associations (sensuLeung and Poulin, 2008) with other organisms, including endo-, meso- and ectoparasitism, commensalism, and mutualism (e.g., Arvy, 1982; Raga, 1994). Some of these organisms, the epibionts (also known as episymbionts or ectosymbionts), are associated to the external surface of cetaceans and can be classified into two basic types. On the one hand, ectoparasites live in/on the skin and cause a variable degree of harm by feeding on hosts’ integument (e.g., Smyth, 1962; Geraci and St. Aubin, 1987; Hopla et al., 1994). On the other hand, commensals or phoronts do not trophically depend on the tissues of cetaceans (also named basibionts in this case), thus they are generally harmless but benefit from epibiosis in multiple ways, e.g., via an improved feeding performance, reduction of predation, favored intraspecific contacts for reproduction, or offspring dispersion (Anderson, 1994; Seilacher, 2005; Carrillo et al., 2015). Not surprisingly, though, the limits of each type of interaction are not always clear-cut. For instance, whale-lice (fam. Cyamidae) are considered ectoparasites that primarily feed on hosts’ skin, but it has been speculated that they may opportunistically feed on plankton, even helping whales to detect plankton blooms, leading to a potentially mutualistic relationship (Rowntree, 1996). Or, high loads of commensal epibionts could increase the swimming drag or damage the skin on the site of settlement, thus producing indirect harm to cetaceans (Tomilin, 1957).

Given the high variety of life cycles of the epibionts of cetaceans, it is perhaps not surprising that their specific interactions are similarly diverse. Some epibionts depend strictly on cetaceans during their whole life (e.g., whale lice; Leung, 1976), whereas others use them only at some stages (e.g., barnacles; Nogata and Matsumura, 2006). Among commensals, many species are obligate epibionts, settling exclusively on cetaceans (e.g., coronulid barnacles; Hayashi et al., 2013), but others can colonize also inanimate substrata such as vessels or floating debris (e.g., Conchoderma spp. and Lepas spp.; Frick and Pfaller, 2013). The degree of host/basibiont specificity is also variable. For instance, many whale lice are known only from single, or a few, host species (Iwasa-Arai and Serejo, 2018), but other epibionts have a very broad host spectrum (e.g., Xenobalanus globicitipitisSteenstrup, 1852 or Pennella balaenopteraKoren & Danielssen, 1877; Kane et al., 2008; Fraija-Fernández et al., 2018). Finally, there are examples of hyperepibiosis in which some epibionts, e.g., barnacles, can act as basibionts for other epibionts, e.g., Conchoderma spp. or cyamids (Cornwall, 1927; Matthews, 1937; Leung, 1970a).

Susceptibility and Health Impact of Cetacean Epibiosis

As many other symbionts, epibionts must succeed twice to live their associative life. This two-step process is mediated by the so-called encounter and compatibility filters (Combes, 2001). First, spatial and temporal overlap must take place for initial settlement. Second, whether the host is a suitable substratum will determine survival and/or reproduction on it. Epidermis renewal and hydrolytic substances of cetacean skin may prevent fouling, at least to some extent (Hicks 1985; Baum et al., 2000; Baum et al., 2001), but skin regeneration and immune functions are seemingly lower in debilitated dolphins (J. R. Geraci and S. H. Ridgway pers comm. in Aznar et al., 1994). Poor health can also result in slower swimming (Aznar et al., 1994; Lehnert et al., 2021), fostering better conditions for epibiotic settlement (e.g., providing more time for contact with blooms of free-living infective stages, or mild water flow over the host’s body, thus reducing drag and facilitating initial colonization). For instance, striped dolphins, Stenella coeruleoalba (Meyen, 1833), infected by morbillivirus and in poor nutritional condition harbored high loads of parasitic and commensal epizoites (Aguilar and Raga, 1993; Aznar et al., 1994; Aznar et al., 2005). Also, higher prevalence of cyamids in porpoises could hint a higher incidence of disease-related skin injuries, where they attach (Lehnert et al., 2021). Another example is the massive infestation of cyamids on a stranded humpback whale, Megaptera novaeangliae (Borowski, 1781), that suffered from severe discospondylitis and, as a result, reduced mobility (Groch et al., 2018).

Once settled, the impact of epibionts on cetacean health varies among taxa (especially between ectoparasites and commensals; see above). For instance, the mesoparasite Pennella balaenoptera penetrates the skin and blubber of its hosts; this process has been related to both macro- and microscopic lesions such as abscesses, inflammation, and dermatitis (Cornaglia et al., 2000; Gomerčić et al., 2006; IJsseldijk et al., 2018). In contrast, no direct damage has been related to whale lice infections (e.g., Migaki, 1987; Lehnert et al., 2021), although it has been speculated that their occurrence may hinder skin healing processes (Lehnert et al., 2021). On the other hand, the possibility that some cetacean epibionts can act as viral or bacterial vectors is an open question, as it has been observed for ectoparasitic crustaceans parasitizing fish (Smit et al., 2019) or lice infecting seals (La Linn et al., 2001). Climate changes have shifted the geographical distribution of arthropod-borne viruses (Gould and Higgs, 2008) and whether these may emerge in cetaceans and even be transmitted by their epibonts (e.g., ectoparasitic lice, see Van Bressem et al., 2009) remains unknown.

Epibionts as Cetacean Indicators

Due to temporal or permanent association with their hosts/basibionts, both endoparasites and epibionts represent a cost-effective tool to study multiple facets of cetacean biology (e.g., Dailey and Vogelbein, 1991; Balbuena et al., 1995; Gomes et al., 2021). However, epibionts are advantageous over endoparasites in that many of them are detectable in the field (e.g., using boat-based photography; see Hermosilla et al., 2015; Siciliano et al., 2020; Flach et al., 2021), and can often be easily found and counted on stranded hosts, be alive or dead, with minimum dissection, if at all (Balbuena et al., 1995). Most studies using epibionts as markers only require basic data to be gathered, i.e. genus- or, preferably, species-level identification, and quantification of population size at host individual or population scales. More elaborated research may require additional information on (1) degree of host specificity, (2) size measurements as an estimate of time since attachment, (3) distribution patterns on hosts’ body, (4) geographic range, and/or (5) selected molecular markers (e.g., Bushuev, 1990; Kaliszewska et al., 2005; Ten et al., 2019; Moreno-Colom et al., 2020; Lehnert et al., 2021).

At present, cetacean epibionts have been used, inter alia, as ‘tags’ to trace past (e.g., Collareta et al., 2018a; Taylor et al., 2019) or present-day (e.g., Pearson et al., 2020; Visser et al., 2020) migratory routes and habitat use; shed light on phylogeography, population structure, and ecological stock delimitation (e.g., Bushuev, 1990; Kaliszewska et al., 2005; Iwasa-Arai et al., 2018); give insight into hydrodynamics (e.g., Kasuya and Rice, 1970; Briggs and Morejohn, 1972; Fish and Battle, 1995; Carrillo et al., 2015; Moreno-Colom et al., 2020), assist in individual recognition (e.g., Visser et al., 2020); and act as sentinels of health status (Mackintosh and Wheeler, 1929; Van Waerebeek et al., 1993; Aznar et al., 1994; Aznar et al., 2005; Lehnert et al., 2007; Vecchione and Aznar, 2014; Lehnert et al., 2021; for more references see Results). Nonetheless, there is plently of further opportunities to exploit the full potential of these organisms as biological indicators.

Aims

Studies including information on cetacean epibionts have usually focused on particular geographical areas (e.g., Kane et al., 2008; Lehnert et al., 2019), host species (e.g., Rice, 1978; Stimmelmayr and Gulland, 2020) or epibiotic taxa (e.g., Kane et al., 2008; Iwasa-Arai and Serejo, 2018). Furthermore, in the last decades a number of nomenclatural changes, new associations, and geographical records have been accumulating, thus we think that the available comprehensive reviews and checklists on this subject (Beneden, 1870; Dailey and Brownell, 1972; Arvy, 1977; Arvy, 1982; Raga, 1994) should be updated. On the other hand, few articles have reviewed the use of marine mammal parasites as biological tags (Balbuena et al., 1995; Mackenzie, 2002), and none gathered information about the whole epibiotic fauna of cetaceans.

The present systematic review aims to compile and update all records of cetacean epibiotic fauna (= epizoites) to date as a thorough, handy catalogue for researchers. Other organisms, i.e. diatoms and cookie-cutter shark, Isistius brasiliensis (Quoy & Gaimard, 1824) are also included in a specific section of this review to provide a complete picture of other externally-associated organisms that have been proven to be valuable biological indicators for cetaceans. Finally, we identify information gaps and future research directions and highlight the value of cetacean epibionts as indicator tools, encouraging their application in cetacean research.

Methods

Literature Search

A systematic literature review was performed following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (Moher et al., 2015; Figure 1). We conducted a thorough bibliographic search in the following databases: Google Scholar (https://scholar.google.com), Scopus (https://www.scopus.com), ScienceDirect (https://www.sciencedirect.com), Web of Science (https://www.webofscience.com), and Sage (https://journals.sagepub.com). The following search string was used for Scopus, ScienceDirect, Web of Science, and Sage: (epibiont OR epibiotic OR epibiosis OR epizoite OR epizoic OR barnacle OR ectoparasite OR mesoparasite) AND (balaena OR eubalaena OR balaenoptera OR megaptera OR eschrichtius OR caperea OR cephalorhynchus OR delphinus OR feresa OR globicephala OR grampus OR lagenodelphis OR lagenorhynchus OR lissodelphis OR orcaella OR orcinus OR peponocephala OR pseudorca OR sotalia OR “Sousa chinensis” OR “Sousa plumbea” OR “Sousa sahulensis” OR “Sousa teuszii” OR stenella OR “Steno bredanensis” OR tursiops OR “Inia geoffrensis” OR kogia OR delphinapterus OR “Monodon monoceros” OR neophocaena OR phocoena OR phocoenoides OR physeter OR platanista OR pontoporia OR berardius OR hyperoodon OR mesoplodon OR tasmacetus OR ziphius OR indopacetus)

Figure 1

Figure 1

Flow diagram of the methodology used in the literature search performed in this systematic review. Adaptation from PRISMA (Preferred Reporting Items for Systematic Reviews) template (Page et al., 2021).

Note that the use of genus name in some cetacean genera, i.e., MonodonLinnaeus, 1758, Sousa Gray, 1866, and Steno Gray, 1846 yielded many records of unrelated taxa, thus full species name was included in these cases. The output was exported and checked for duplicates and non-relevant papers with the open-source reference management software Zotero.

In the case of Google Scholar, only the first 100 result pages are available, thus we used the search strings “(epibiont OR epibiotic OR epibiosis OR epizoite OR epizoic OR barnacle OR ectoparasite OR mesoparasite) AND i”, where i stands for a cetacean genus, to maximize the number of obtainable records. The output of each search was checked manually. In addition, we searched each epibiotic species in GBIF.org and included those associations and geographic locations that had not been reported in scientific publications. For all publications obtained, we looked up their references to search for potential missing records.

The final list includes the literature published until December 2021 that provides information on cetacean-epibiont(s) associations (Figure 1). These results are listed according to the epibiotic (see the Results) and the cetacean taxa (Supplementary Table 1). For each selected record, we extracted the following information, when available: cetacean species, epibiotic species, geographic area(s), prevalence (i.e., percent occurrence of the epibiont in each cetacean species of the sample), location on the cetacean, and any information related to indicator potential. Current species nomenclature and synonyms were checked in WoRMS (https://www.marinespecies.org/) and recent literature. Geographical locations were also classified at the scale of Large Marine Ecosystem (LME) (see e.g., Brotz et al., 2012).

For comparative purposes, we investigated research effort on each cetacean species using the number of results in Google Scholar as a proxy. For each species, we used the scientific name in quotation marks as search string. For the 6 species that previously constituted the Lagenorynchus genus (see Vollmer et al., 2019), we used the former nomenclature for the search to avoid understimation (i.e., "Lagenorynchus" followed by species name).

Results

General Patterns

A total of 492 published documents, including 7 unpublished manuscripts, and 9 GBIF records were found. Three additional reliable records were serendipitously found in internet photo-catalogues and were also included in the final list (Supplementary Table 1). A roughly exponential trend in the number of publications was found throughout the period covered (1655-2021), with a peak in the 2010s decade (Figure 2); 2020 was the most productive year with 21 publications.

Figure 2

Figure 2

Number (N) of publications including data on cetacean epibiotic fauna at a decadal scale from 1655 to 2021.

Baleen whales, and particularly Megaptera novaeangliae (Borowski, 1781), show the highest diversity of epibionts, followed by Tursiops spp. (Figure 3). However, it is difficult to ascertain the extent to which this pattern is affected by sampling effort (Figure 3). Likewise, 26 cetacean species from four genera have no published records of epibiotic fauna to date (Supplementary Table 1), but these hosts have also been generally little studied (< 4,000 publications in Google Scholar, Figure 3). Research effort varies also among geographic regions (Figure 4). The Mediterranean Sea and Antarctica are, by far, the geographic areas with the highest number of publications of cetacean epizoites, and some areas still lack such studies.

Figure 3

Figure 3

Number of epibiotic species (bars, left y-axis) and total number of general results in Google Scholar (line, right y-axis) of each cetacean genus. The number of cetacean species in each genus is shown in parentheses.

Figure 4

Figure 4

Number of publications (indicated by numbers and color gradient) on cetaceans that contain data on their epibiotic fauna at least to genus level grouped by Large Marine Ecosystems (LME). When the same publication includes data for several LMEs, it is counted separately for each one. Azores (NE Atlantic) and Tonga (SW Pacific) are not in the LME system but were included as additional areas.

Systematic List

A systematic list of the 58 epizoic taxa (53 at species level) found to date on cetaceans follows. For each one, we provide information on (i) taxonomic synonyms; (ii) a subset of selected references that provide a complete overview of the species morphology; (iii) molecular sequences available on GenBank (https://www.ncbi.nlm.nih.gov/genbank/), with references or with Accession Number whenever no published manuscript was available; (iv) primary type of association, including parasitic (34 spp.), obligate commensal (8-9 spp.), facultative commensal (8 spp.), mutualistic (possibly 1 sp.), or unknown (2 spp.); (v) a list of cetacean hosts/basibionts; (vi) geographic range; (vii) life-cycle; and (viii) microhabitat, i.e., the location(s) on the cetacean body, with references; and (ix) indicator use or potential, with references. Any other relevant data are reported in the ‘Remarks’ section, and all records of association between epizoites and cetaceans are cited in the ‘References’ section.

  • Phylum Arthropoda von Siebold, 1848

  • Class Malacostraca Latreille, 1802

  • Subclass Eumalacostraca, Grobben, 1892

  • Order Amphipoda Latreille, 1816

  • Family Cyamidae Rafinesque, 1815

The Cyamidae (‘whale lice’) comprises a group of amphipods that are found exclusively on marine cetaceans (see, e.g., Iwasa-Arai and Serejo, 2018). These 3-30 mm creatures use their pereopods to cling to areas of reduced water flow (e.g., ventral grooves, blowhole, genital slit), where they spend their whole life feeding primarily on cetacean skin (Rowntree, 1983; Rowntree, 1996; Schell et al., 2000); thus, they are all considered ectoparasites. However, evidence that they cause any harm is rather scarce, so some authors support the use of the term ‘ectocommensals’ for them (Leung, 1976; Kenney, 2009). Rowntree (1996) discussed the possibility that some cyamids from whales may also feed on plankton, having perhaps developed mutualistic associations with their hosts. In particular, the cyamid species covering the sensory hairs of whales could increase their activity during plankton blooms, amplifying the signal for prey detection by whales. In addition, it has also been suggested that cyamids could feed on cetaceans’ dead skin and epibiotic algae, thus cleaning up wounds and speeding up healing (Williams and Bunkley-Williams, 2019). Lehnert et al. (2021), on the contrary, hypothesized that cyamids’ feeding activity could actually hinder the healing of skin injuries, and some authors have suggested that heavy cyamid infections may contribute to the death of their hosts (Mignucci-Giannoni et al., 1998).

Since cyamids lack swimming stages, transmission must occur through bodily contacts (Fransen and Smeenk, 1991; Pfeiffer, 2009). Males are typically larger than females (but see Fraija-Fernández et al., 2017) and, at least in some species, have been observed to perfom pre-copulatory mate guarding (Rowntree, 1996; Oliver and Trilles, 2000). Females mate after molting (Conlan, 1991) and incubate eggs and protect the hatchling in a ventral brood pouch (Leung, 1976; Williams and Bunkley-Williams, 2019).

Balaenocyamus balaenopterae (Barnard K.H. 1931)

Synonyms

Cyamus balaenopterae Barnard K.H. 1931

Morphological Description

Barnard, 1932; Margolis, 1959; Leung, 1967; Iwasa-Arai and Serejo, 2018

Molecular Sequences

18S rRNA (Ito et al., 2011)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Balaenoptera acutorostrata Lacépède, 1804, B. bonaerensis Burmeister, 1867, B. musculus (Linnaeus, 1758), B. physalus (Linnaeus, 1758)

Geographic Range

Atlantic, Pacific, Mediterranean, Indian Ocean, Antarctica

Life Cycle

In common minke whales, Balaenoptera acutorostrata, captured off Iceland, a one-year long life cycle is assumed; similar to other whale lice, hatching occurs in autumn, juveniles are released from the females’ pouch in mid-winter, and they reach sexual maturity in spring or summer (Ólafsdóttir and Shinn, 2013). This life cycle may be synchronized with whales’ seasonal migration (Raga and Sanpera, 1986).

Microhabitat

Natural orifices, i.e., ventral grooves, eyes, umbilicus, mammary slits, anus, and genital slit (Ohsumi et al., 1970; Ivashin, 1975; Raga and Sanpera, 1986)

Use as Indicator

Used to delineate ecological stocks and detect sex segregation in migrating cetaceans (Kawamura, 1969; Bushuev, 1990; Ólafsdóttir and Shinn, 2013).

Remarks

-

References

Mackintosh and Wheeler, 1929; Barnard, 1931; Barnard, 1932; Margolis, 1959; Leung, 1965; Kawamura, 1969; Ohsumi et al., 1970; Lincoln and Hurley, 1974a; Ivashin, 1975; Rice, 1978; Berzin and Vlasova, 1982; Best, 1982; Raga and Sanpera, 1986; Avdeev, 1989; Bushuev, 1990; Sedlak-Weinstein, 1990 (unpubl.); Dailey and Vogelbein, 1991; Kuramochi et al., 1996; Araki et al., 1997; Uchida, 1998; Kuramochi et al., 2000; Margolis et al., 2000; Uchida and Araki, 2000; Ólafsdóttir and Shinn, 2013; Iwasa-Arai and Serejo, 2018; Ten et al., unpubl.

Cyamus boopis (Lütken, 1870)

Synonyms

Cyamus elongatus Hiro, 1938, C. pacificus Lütken, 1873, C. suffuses Dall, 1872, Paracyamus boopis (Lütken, 1870)

Morphological Description

Sars, 1895; Barnard, 1932; Leung, 1967; Margolis et al., 2000; Iwasa-Arai et al., 2016

Molecular Sequences

COI (Iwasa-Arai et al., 2017a, Iwasa-Arai et al., 2018; GenBank FJ751158; FJ751159; MT551876; OK562816-OK562832), COII, COIII, ATP6, ATP8, ND3 (Kaliszewska et al., 2005) and the complete mitochondrial genome (GenBank MT458501)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Typically on Megaptera novaeangliae, but once reported on Berardius bairdii Duvernoy, 1851, Eubalaena australis (Desmoulins, 1822), and Tursiops truncatus (Montagu, 1821)

Geographic Range

Arctic, Atlantic, Pacific, Mediterranean, Indian Ocean, Antarctica

Life Cycle

Transmission may regularly occur during contacts between migrating hosts or at the feeding areas (Iwasa-Arai et al., 2018).

Microhabitat

Ubiquitous, i.e., head tubercles, eye, jaw, ventral grooves, genital slit, fins (Matthews, 1937; Cockrill, 1960; Ivashin, 1965; Rowntree, 1996). Sometimes attached to the epibiotic cirripedes Coronula diadema (Linnaeus, 1767) and Conchoderma spp. (Dall, 1872; Matthews, 1937; Stephensen, 1942; Angot, 1951; Cockrill, 1960).

Use as Indicator

Haplotype and nucleotide diversities have been used to assess inter-mixing between different breeding populations of humpback whales (Iwasa-Arai et al., 2018). Also, its presence on a southern right whale suggests an interspecific interaction with humpback whales in Brazilian waters (Iwasa-Arai et al., 2017a). The presence of an alive unidentified cyamid (likely C. boopis) on a humpback whale was used to infer that the stranding occurred less than three days before (Bortolotto et al., 2016).

Remarks

Some records of C. boopis on sperm whales (e.g., Barnard, 1932) were re-classified as C. catodontis by Margolis (1955) and later authors (e.g., Stock, 1973a; Iwasa-Arai and Serejo, 2018).

References

Lütken, 1870; Dall, 1872; Scammon, 1874; Pouchet, 1888; Pouchet, 1892; Sars, 1895; Collet, 1912; Chevreux, 1913a; Liouville, 1913; Ishi, 1915; Cornwall, 1928; Barnard, 1932; Matthews, 1937; Hiro, 1938; Scheffer, 1939; Angot, 1951; Hurley, 1952; Rees, 1953; Margolis, 1954a; Cockrill, 1960; Rice, 1963; Ivashin, 1965; Leung, 1965; Leung, 1970b; Lincoln and Hurley, 1974a; Berzin and Vlasova, 1982; Sedlak-Weinstein, 1991; Rowntree, 1996; Abollo et al., 1998; Osmond and Kaufman, 1998; Margolis et al., 2000; Alonso de Pina and Giuffra, 2003; Carvalho et al., 2010; Iwasa-Arai et al., 2016; Iwasa-Arai et al., 2017b; Iwasa-Arai et al., 2018; Groch et al., 2018; Iwasa-Arai et al., 2021; Iwasa-Arai et al., 2018; Qiao et al., 2020

Cyamus catodontis (Margolis, 1954)

Synonyms

Cyamus bahamondei Buzeta, 1963

Morphological Description

Margolis, 1954a; Margolis, 1955; Buzeta, 1963; Leung, 1967; Stock, 1973a; Margolis et al., 2000

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Typically on Physeter macrocephalusLinnaeus, 1758, but once reported on Balaenoptera acutorostrata, B. bonaerensis, B. musculus, B. physalus, and Berardius bairdii

Geographic Range

Eastern Atlantic, Pacific, Indian Ocean, Antarctica

Life Cycle

-

Microhabitat

One record on a sperm whale’s deformed jaw (Buzeta, 1963)

Use as Indicator

Used to detect social segregation in sperm whales; large males, but not females nor male bachelors, were infected with C. catodontis, suggesting that the former leave their natal pods at puberty (Best, 1969a; Best, 1979).

Remarks

-

References

Barnard, 1932; Margolis, 1954a; Clarke, 1956; Buzeta, 1963; Rice, 1963; Leung, 1965; Best, 1969a; Best, 1969b; Best, 1979; Stock, 1973b; Lincoln and Hurley, 1974a; Berzin and Vlasova, 1982; Fransen and Smeenk, 1991; Iwasa-Arai and Serejo, 2018

Cyamus ceti (Linnaeus, 1758)

Synonyms

Oniscus ceti Linnaeus, 1758

Morphological Description

Krøyer, 1843; Leung, 1967; Margolis et al., 2000; Iwasa-​Arai and Serejo, 2018

Molecular Sequences

COI (GenBank FJ751160-FJ751180)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Typically on Balaena mysticetusLinnaeus, 1758, but once reported on Eschrichtius robustus (Lilljeborg, 1861) and Eubalaena japonica (Lacépède, 1818)

Geographic Range

Artic, North Pacific

Life Cycle

Similar to C. scammoni (see below), but juveniles reach maturity before whales’ northern migration to summer grounds (Leung, 1976). Females carry 150-240 eggs in the brood pouch, of which about 75% are fertilized (Leung, 1976).

Microhabitat

Creases of the lips, flippers, flukes, and thin areas, e.g., armpit and genital slit (Stephensen, 1942; Leung, 1976)

Use as Indicator

-

Remarks

-

References

Linnaeus, 1758; Lütken, 1870; Dall, 1872; Scammon, 1874; Margolis, 1955; Omura, 1958; Rice, 1963; Lincoln and Hurley, 1974a; Leung, 1976; Berzin and Vlasova, 1982; Heckmann et al., 1987; Margolis et al., 2000; Kaliszewska et al., 2005; Von Duyke et al., 2016; Chernova et al., 2017; Iwasa-Arai and Serejo, 2018

Cyamus erraticus (Roussel de Vauzème, 1834)

Synonyms

Paracyamus erraticus Roussel de Vauzème, 1834

Morphological Description

Barnard, 1932; Iwasa, 1934; Margolis, 1955; Leung, 1967

Molecular Sequences

COI, COII, COIII, ATP6, ATP8, ND3 (Kaliszewska et al., 2005), EF1a (Seger et al., 2010)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Typically on Eubalaena australis, E. glacialis (Müller, 1776), and E. japonica; also found on Megaptera novaeangliae

Geographic Range

Atlantic, Pacific, Indian Ocean, Antarctica

Life Cycle

-

Microhabitat

Genital, mammary, and anal slits, armpits, and opportunistically on wounds (Stephensen, 1942; Rowntree, 1996; see Remarks)

Use as Indicator

Sequence variation in mitochondrial DNA was used to investigate associations among right whale individuals and subpopulations, to estimate the time of past divergence of right whale populations, and to infer possible changes in their population sizes (Kaliszewska et al., 2005).

Remarks

Transmission probably occurs from mothers’s genital slit to calves’ head at birth. As callosity tissue develops, calves are colonized by the putative competitor Cyamus ovalisRoussel de Vauzème, 1834, likely by head-to-head contact with the mother; the distribution of C. erraticus is then restricted to skin folds and wounds (Rowntree, 1996).

References

Rossel de Vauzème, 1834; Lütken, 1873; Collet, 1912; Chevreux, 1913a; Liouville, 1913; Barnard, 1932; Iwasa, 1934; Margolis, 1955; Lincoln and Hurle7y, 1974a; Berzin and Vlasova, 1982; Rowntree, 1996; Margolis et al., 2000; Iwasa-Arai and Serejo, 2018

Cyamus eschrichtii (Margolis, McDonald & Bousfield, 2000)

Synonyms

-

Morphological Description

Margolis et al., 2000

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Eschrichtius robustus

Geographic Range

California (eastern North Pacific)

Life Cycle

-

Microhabitat

-

Use as Indicator

-

Remarks

-

References

Margolis et al., 2000

Cyamus gracilis (Roussel de Vauzème, 1834)

Synonyms

Paracyamus gracilis (Roussel de Vauzème, 1834)

Morphological Description

Barnard, 1932; Leung, 1967; Iwasa-Arai and Serejo, 2018

Molecular Sequences

COI, COII, COIII, ATP6, ATP8, ND3 (Kaliszewska et al., 2005), EF1a (Seger et al., 2010)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Eubalaena australis, E. glacialis, E. japonica

Geographic Range

Atlantic, Pacific, Antarctica

Life Cycle

-

Microhabitat

Head callosities (Barnard, 1932; Rowntree, 1996)

Use as Indicator

See C. erraticus.

Remarks

In a South African sample, C. gracilis co-occurred with C. ovalisRoussel de Vauzème, 1834 (Barnard, 1932).

References

Rossel de Vauzème, 1834; Lütken, 1873; Barnard, 1932; Margolis, 1955; Leung, 1965, Leung 1967; Lincoln and Hurley, 1974a; Berzin and Vlasova, 1982; Rowntree, 1996; Alonso de Pina and Giuffra, 2003; Iwasa-Arai and Serejo, 2018

Cyamus kessleri (A. Brandt, 1873)

Synonyms

-

Morphological Description

Brandt, 1872; Leung, 1967; Margolis et al., 2000; Iwasa-Arai and Serejo, 2018

Molecular Sequences

COI (GenBank FJ751215-FJ751224)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Eschrichtius robustus

Geographic Range

From Chukchi Sea to California (eastern North Pacific)

Life Cycle

Similar to C. scammoni (see below), but juveniles reach maturity before whales’ northern migration to summer grounds (Leung, 1976). Females carry up to 300 eggs in the brood pouch, of which 75-80% are fertilized (Leung, 1976).

Microhabitat

Umbilicus, genital slit, and anal aperture (Leung, 1976)

Use as Indicator

-

Remarks

-

References

Hurley and Mohr, 1957; Leung, 1976; Berzin and Vlasova, 1982; Margolis et al., 2000; Kaliszewska et al., 2005; Iwasa-Arai and Serejo, 2018

Cyamus mesorubraedon (Margolis, McDonald & Bousfield, 2000)

Synonyms

-

Morphological Description

Margolis et al., 2000

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Physeter macrocephalus

Geographic Range

Vancouver Island (eastern North Pacific)

Life Cycle

-

Microhabitat

-

Use as Indicator

-

Remarks

-

References

Margolis et al., 2000

Cyamus monodontis (Lütken, 1870)

Synonyms

-

Morphological Description

Leung, 1967; Margolis et al., 2000; Iwasa-Arai et al., 2017b; Iwasa-Arai and Serejo, 2018

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Delphinapterus leucas (Pallas, 1776), Monodon monocerosLinnaeus, 1758, Ziphius cavirostris Cuvier, 1823

Geographic Range

Arctic, western North Atlantic, eastern North Pacific

Life Cycle

-

Microhabitat

Tusk base, caudal fin along with C. nodosus, skin injuries (Porsild, 1922; Stephensen, 1942)

Use as Indicator

-

Remarks

-

References

Lütken, 1870; Porsild, 1922; Lincoln and Hurley, 1974a; Heyning and Dahlheim, 1988; Mignucci-Giannoni et al., 1998; Margolis et al., 2000; Iwasa-Arai et al., 2017a

Cyamus nodosus (Lütken, 1861)

Synonyms

Paracyamus nodosus (Lütken, 1861)

Morphological Description

Leung, 1967; Iwasa-Arai et al., 2017b; Iwasa-Arai and Serejo, 2018

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Delphinapterus leucas, Monodon monoceros

Geographic Range

Greenland (Arctic, western North Atlantic)

Life Cycle

-

Microhabitat

Tusk base, caudal fin along with C. monodontis, skin injuries (Porsild, 1922; Stephensen, 1942)

Use as Indicator

-

Remarks

-

References

Lütken, 1870; Porsild, 1922; Margolis, 1954b; Margolis, 1955; Lincoln and Hurley, 1974a; Iwasa-Arai et al., 2017a

Cyamus orubraedon (Waller, 1989)

Synonyms

-

Morphological Description

Margolis et al., 2000

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Berardius bairdii

Geographic Range

North Pacific

Life Cycle

-

Microhabitat

Lower jaw (Waller, 1989)

Use as Indicator

-

Remarks

-

References

Waller, 1989; Margolis et al., 2000; Iwasa-Arai and Serejo, 2018

Cyamus ovalis (Roussel de Vauzème, 1834)

Synonyms

-

Morphological Description

Roussel de Vauzème, 1834; Iwasa, 1934; Leung, 1967; Margolis et al., 2000; Iwasa-Arai and Serejo, 2018

Molecular Sequences

COI (Kaliszewska et al., 2005; Seger et al., 2010), COII, COIII, ATP6, ATP8, ND3 (Kaliszewska et al., 2005), EF1a (Seger et al., 2010)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Eubalaena australis, E. glacialis, E. japonica, Physeter macrocephalus; once reported on Megaptera novaeangliae

Geographic Range

Atlantic, Pacific, Antarctica

Life Cycle

-

Microhabitat

Head callosities, sometimes with C. erraticus (Stephensen, 1942; Rowntree, 1996; see C. erraticus, above)

Use as Indicator

See C. erraticus.

Remarks

Once misidentified as Cyamus rhytinae (J. F. Brandt, 1846), ectoparasitic on the extinct Steller’s sea cow, Hydrodamalis gigas (Zimmermann, 1780) Palmer, 1895 (see Leung, 1967; O'Clair and O'Clair, 1998).

References

Roussel de Vauzème 1834; Lütken, 1873; Collet, 1912; Liouville, 1913; Barnard, 1932; Iwasa, 1934; Margolis, 1955; Leung, 1967; Lincoln and Hurley, 1974a; Berzin and Vlasova, 1982; Rowntree, 1996; Margolis et al., 2000; Pettis et al., 2004; Iwasa-Arai and Serejo, 2018

Cyamus scammoni (Dall, 1872)

Synonyms

-

Morphological Description

Lütken, 1887; Leung, 1967; Margolis et al., 2000; Iwasa-Arai and Serejo, 2018

Molecular Sequences

COI (GenBank FJ751214), hemocyanin mRNA (Terwilliger and Ryan, 2006)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Eschrichtius robustus

Geographic Range

North Pacific

Life Cycle

Females can carry about 1,000 eggs in the brood pouch, although only about a 60% are fertilized (Leung, 1976). Eggs hatch in autumn, when gray whales arrive in California, and the young remain in the female’s pouch for 2-3 months and then find shelter in host’s crevices (Leung, 1976). Juveniles reach maturity during the winter northward migration of whales, and have full-grown brood upon arrival to summer grounds. The whole cycle takes 8-9 months to complete and there is probably some overlap in the life cycle of different individuals, given that juveniles are present throughout the year (Leung, 1976). The number of instars is presumed to be at least 7 or 8, but the number of ecdysis was untraceable (Leung, 1976).

Microhabitat

Ventral grooves, i.e., jaw and belly; flukes; on the cirriped Cryptolepas rachianectiDall, 1872 (Leung, 1976; Dailey et al., 2000)

Use as Indicator

-

Remarks

Chonotrichous ciliates can infest its ventral surface (Leung, 1976).

References

Dall, 1872; Scammon, 1874; Lütken, 1887; Margolis, 1954a; Rice, 1963; Leung, 1965; Lincoln and Hurley, 1974a; Leung, 1976; Sullivan and Houck, 1979; Berzin and Vlasova, 1982; Dailey et al., 2000; Margolis et al., 2000; Kaliszewska et al., 2005; Takeda and Ogino, 2005; Murase et al., 2014; Iwasa-Arai and Serejo, 2018

Isocyamus antarcticensis (Vlasova in Berzin & Vlasova, 1982)

Synonyms

Cyamus antarcticensis Vlasova in Berzin & Vlasova, 1982

Morphological Description

Berzin and Vlasova, 1982

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Orcinus orca (Linnaeus, 1758)

Geographic Range

Antarctica

Life Cycle

-

Microhabitat

Pectoral fins, umbilicus (Berzin and Vlasova, 1982)

Use as Indicator

-

Remarks

-

References

Berzin and Vlasova, 1982

Isocyamus delphinii (Guérin-Méneville, 1836)

Synonyms

Cyamus delphinii Guérin-Méneville, 1836, C. globicipitis Lütken, 1870

Morphological Description

Barnard, 1932; Leung, 1967; Stock, 1973a; Stock, 1973b; Stock, 1977; Sedlak-Weinstein, 1991; Margolis et al., 2000; Lehnert et al., 2007; Lehnert et al., 2021

Molecular Sequences

COI (Lehnert et al., 2021)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Typically found on Globicephala melas (Traill, 1809); some records on Delphinus delphisLinnaeus, 1758, Grampus griseus (G. Cuvier, 1812), Lagenorhynchus albirostris (Gray, 1846), Phocoena phocoena (Linnaeus, 1758), and Pseudorca crassidens (Owen, 1846); once reported on Globicephala macrorhynchus Gray, 1846, Megaptera novaeangliae, Mesoplodon europaeus (Gervais, 1855), Peponocephala electra (Gray, 1846), Phocoena dioptrica Lahille, 1912, Steno bredanensis (G. Cuvier in Lesson, 1828), and Tursiops truncatus

Geographic Range

Arctic, Atlantic, Pacific, Mediterranean, Indian Ocean

Life Cycle

-

Microhabitat

Ubiquitous; i.e., blowhole, eyes, jaw, insertion of pectoral fin, wounds (Stock, 1973a; Stock, 1977; Greenwood et al., 1979; Raga et al., 1988; Balbuena et al., 1989; Balbuena and Raga, 1991; Raga and Balbuena, 1993; Jauniaux et al., 2002; Lehnert et al., 2007; Batista et al., 2012; Lehnert et al., 2021)

Use as Indicator

The higher prevalence and intensity of I. delphinii on mature long-finned pilot whale males (vs. females and immature males) may identify the males that are dominant in sexual fights, given that the resulting wounds serve as shelter for this cyamid species (Balbuena and Raga, 1991; Raga and Balbuena, 1993).

Remarks

Lehnert et al. (2021) pose that some records around the 1970-90s misidentified this species and refer to Isocyamus deltobranchium Sedlak-Weinstein, 1992, which has triangular accessory gills (vs. cylindrical in I. delphinii).

References

Lütken, 1870; Lütken, 1893; Collet, 1912; Chevreux, 1913b; Hiro, 1938; Bowman, 1955; Sergeant, 1962; Leung, 1965; Stock, 1973a; Stock, 1973b; Lincoln and Hurley, 1974a; Stock, 1977; Van Bree and Smeenk, 1978; Greenwood et al., 1979; Berzin and Vlasova, 1982; Raga et al., 1983a; Rappé, 1985; Raga et al., 1988; Balbuena et al., 1989; Mead, 1989; Rappé, 1991; Balbuena and Raga, 1991; Fransen and Smeenk, 1991; Sedlak-Weinstein, 1991; Raga and Balbuena, 1993; Abollo et al., 1998; Gibson et al., 1998; Margolis et al., 2000; Wardle et al., 2000; Haelters, 2001; Jauniaux et al., 2002; Haney et al., 2004; Lehnert et al., 2007; Batista et al., 2012; Lehnert et al., 2021; Iwasa-Arai and Serejo, 2018

Isocyamus deltobranchium (Sedlak-Weinstein, 1992)

Synonyms

-

Morphological Description

Sedlak-Weinstein, 1992a; Martínez et al., 2008; Lehnert et al., 2021

Molecular Sequences

COI (Lehnert et al., 2021)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Phocoena phocoena; once reported on Delphinus delphis, Globicephala macrorhynchus, G. melas, Mesoplodon mirus True, 1913, and Orcinus orca

Geographic Range

Eastern North Atlantic, western north Pacific, Indian Ocean

Life Cycle

-

Microhabitat

Skin wounds (Sedlak-Weinstein, 1992a; Martínez et al., 2008; Lehnert et al., 2021)

Use as Indicator

Higher prevalence in some harbor porpoise populations may reveal more interspecific contacts than in other areas (Lehnert et al., 2021). Also, temporal changes in prevalence could trace trends in the health status of cetacean hosts, given that it has been suggested that poor nutritional status may increase the susceptibility of porpoises to whale lice infections (Lehnert et al., 2021).

Remarks

Diatoms have been reported between I. deltobranchium forearms (Lehnert et al., 2021).

References

Sedlak-Weinstein, 1992a; Martínez et al., 2008; Iwasa-Arai and Serejo, 2018; Lehnert et al., 2021

Isocyamus indopacetus (Iwasa-Arai & Serejo, 2017)

Synonyms

-

Morphological Description

Iwasa-Arai et al., 2017b; Iwasa-Arai and Serejo, 2018; Kobayashi et al., 2021

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Indopacetus pacificus (Longman, 1926)

Geographic Range

Japan, New Caledonia (western Pacific)

Life Cycle

-

Microhabitat

Mouth, mammary slits, and scars provoked by Isistius sp. (Kobayashi et al., 2021)

Use as Indicator

-

Remarks

-

References

Iwasa-Arai et al., 2017a; Kobayashi et al., 2021

Isocyamus kogiae (Sedlak-Weinstein, 1992)

Synonyms

-

Morphological Description

Sedlak-Weinstein, 1992b

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Kogia breviceps (de Blainville, 1838)

Geographic Range

Australia (western South Pacific)

Life Cycle

-

Microhabitat

Skin wounds (Sedlak-Weinstein, 1992b)

Use as Indicator

-

Remarks

-

References

Sedlak-Weinstein, 1992b

Neocyamus physeteris (Pouchet, 1888)

Synonyms

Cyamus fascicularis Verrill, 1901, C. physeteris Pouchet, 1888, Paracyamus physeteris (Pouchet, 1888)

Morphological Description

Pouchet, 1892; Leung, 1967; Margolis et al., 2000; Iwasa-Arai and Serejo, 2018

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Typically on Physeter macrocephalus; single record on Phocoenoides dalli (True, 1885)

Geographic Range

Eastern Pacific, Atlantic

Life Cycle

-

Microhabitat

-

Use as Indicator

Used to detect social segregation in sperm whales: females and male bachelors, but not large males, harbour N. physeteris, suggesting that the later leave their natal pods at puberty (Best, 1969a; Best, 1979).

Remarks

-

References

Pouchet, 1888; Pouchet, 1892; Verrill, 1902; Clarke, 1956; Margolis, 1959; Buzeta, 1963; Leung, 1965; Leung, 1967; Best, 1969a; Lincoln and Hurley, 1974a; Best, 1979; Berzin and Vlasova, 1982; Mignucci-Giannoni et al., 1998; Margolis et al., 2000; Iwasa-Arai and Serejo, 2018

Orcinocyamus orcini (Leung, 1970)

Synonyms

Cyamus orcini Leung, 1970b

Morphological Description

Leung, 1970b; Margolis et al., 2000

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Orcinus orca

Geographic Range

Senegal (eastern South Atlantic)

Microhabitat

-

Use as Indicator

-

Remarks

-

References

Leung, 1970b

Platycyamus flaviscutatus (Waller, 1989)

Synonyms

-

Morphological Description

Margolis et al., 2000

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Berardius bairdii

Geographic Range

North Pacific

Life Cycle

-

Microhabitat

Head, back, flanks, flukes (Waller, 1989)

Use as Indicator

-

Remarks

-

References

Waller, 1989; Margolis et al., 2000

Platycyamus thompsoni (Gosse, 1855)

Synonyms

Cyamus thompsoni Gosse, 1855

Morphological Description

Gosse, 1855; Lütken, 1873; Wolff, 1958; Leung, 1967; Sedlak-Weinstein, 1991; Iwasa-Arai and Serejo, 2018

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Typically on Hyperoodon ampullatus (Forster, 1770); once reported on H. planifrons Flower, 1882 and Mesoplodon grayi von Haast, 1876

Geographic Range

North Atlantic, Pacific, Antarctica

Life Cycle

At least four instars have been distinguished in females (Wolff, 1958). Males are more difficult to classify by morphological features and could die and fall off the whale after copulation (Wolff, 1958).

Microhabitat

Ubiquitous on skin, i.e., eyes, beak, corners of the mouth (Tomilin, 1957; Wolff, 1958; Lincoln and Hurley, 1974a; Sedlak-Weinstein, 1991)

Use as Indicator

-

Remarks

-

References

Gosse, 1855; Lütken, 1870; Vosseler, 1889; Collet, 1912; Liouville, 1913; Tomilin, 1957; Wolff, 1958; Stock, 1973b; Lincoln and Hurley, 1974a; Berzin and Vlasova, 1982; Fransen and Smeenk, 1991; Sedlak-Weinstein, 1991; Iwasa-Arai and Serejo, 2018

Scutocyamus antipodensis (Lincoln & Hurley, 1980)

Synonyms

-

Morphological Description

Lincoln and Hurley, 1980

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Cephalorhynchus hectori (Lacépède, 1804), Phocoena dioptrica, Sagmatias obscurus (Gray, 1828)

Geographic Range

Off Namibia (eastern South Atlantic) and New Zealand (western South Pacific)

Life Cycle

-

Microhabitat

Ubiquitous on skin (Lincoln and Hurley, 1980; Best and Meÿer, 2010; Lehnert et al., 2017)

Use as Indicator

-

Remarks

-

References

Lincoln and Hurley, 1980; Best and Meÿer, 2010; Lehnert et al., 2017

Scutocyamus parvus (Lincoln & Hurley, 1974)

Synonyms

-

Morphological Description

Lincoln and Hurley, 1974b

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Lagenorhynchus albirostris

Geographic Range

North Sea

Life Cycle

-

Microhabitat

-

Use as Indicator

-

Remarks

-

References

Lincoln and Hurley, 1974a, Lincoln and Hurley, 1974b; Stock, 1977; Fransen and Smeenk, 1991

Syncyamus aequus (Lincoln & Hurley, 1981)

Synonyms

See Remarks.

Morphological Description

Lincoln and Hurley, 1981; Raga, 1988; Sedlak-Weinstein, 1991

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Delphinus delphis, Stenella coeruleoalba; once reported on Sousa chinensis (Osbeck, 1765), Stenella longirostris (Gray, 1828), Tursiops aduncus (Ehrenberg, 1832 [1833]), and T. truncatus

Geographic Range

Mediterranean, western South Pacific, Indian Ocean

Life Cycle

-

Microhabitat

Blowhole, eyes, corner of mouth, snout, jaw, axilla (Lincoln and Hurley, 1981; Raga and Raduan, 1982; Aznar et al., 1994; Cerioni and Mariniello, 1996; Haney, 1999; Haney et al., 2004; Fraija-Fernández et al., 2017)

Use as Indicator

-

Remarks

On the one hand, Mediterranean striped dolphins, Stenella coeruleoalba, harbored low prevalence and intensity of S. aequus (27% and 3 ind./host, respectively; Fraija-Fernández et al., 2017). Since striped dolphins are highly social animals (Carlucci et al., 2015), transmission success would be hardly hampered by the scarcity of contacts, but rather by the low sizes of source populations. These small populations may result from the extreme limitation of suitable microhabitats to shelter on these fast-swimming dolphins (Fraija-Fernández et al., 2017). This phenomenon seems also to impact the reproductive strategy of this species (Fraija-Fernández et al., 2017). On the other hand, the species Cyamus chelipes was first described by Costa (1866) and later re-classified in the genus Syncyamus by Bowman (1958). It is considered a nomen dubium (Haney, 1999), the type series is lost (Bowman, 1958), and it was not included in later reviews of the Cyamidae (Leung, 1965; Iwasa-Arai and Serejo, 2018|). Thus, it is possible that S. chelipes is a synonym of S. aequus, later described and common in the Mediterranean Sea (see above, Supplementary Table 1).

References

Lincoln and Hurley, 1981; Raga and Raduan, 1982; Raga et al., 1983; Raga and Carbonell, 1985; Raga, 1988; Sedlak-Weinstein, 1991; Aznar et al., 1994; Mariniello et al., 1994; Ross et al., 1994; Cerioni and Mariniello, 1996; Margolis et al., 2000; Fraija-Fernández et al., 2017

Syncyamus ilheusensis (Haney, de Almeida & Reid, 2004)

Synonyms

-

Morphological Description

Haney et al., 2004; Iwasa-Arai et al., 2017b; Iwasa-Arai and Serejo, 2018

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Globicephala macrorhynchus, Peponocephala electra, Stenella clymene (Gray, 1850)

Geographic Range

Brazil (western South Atlantic)

Life Cycle

-

Microhabitat

Eyes, blowhole (Haney et al., 2004; Batista et al., 2012)

Use as Indicator

-

Remarks

-

References

Haney et al., 2004; Batista et al., 2012; Iwasa-Arai et al., 2017a; Iwasa-Arai et al., 2018

Syncyamus pseudorcae (Bowman, 1955)

Synonyms

-

Morphological Description

Bowman, 1955; Leung, 1967

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Delphinus delphis, Pseudorca crassidens, Stenella clymene

Geographic Range

North Atlantic, Pacific

Life Cycle

-

Microhabitat

Blowhole, mouth, snout, jaw (Carvalho et al., 2010)

Use as Indicator

-

Remarks

-

References

Bowman, 1955; Leung, 1970a; Sedlak-Weinstein, 1991; Jefferson et al., 1995; Carvalho et al., 2010

Order Isopoda Latreille, 1817

Family Cymothoidae Leach, 1818

Representatives from the family Cymothoidae are obligate parasites of mainly marine but also freshwater fish (Smit et al., 2014). Identification of cymothoid isopods is often difficult because species often show high morphological variation (Trilles et al., 2013). Many species of Nerocila Leach, 1818 require taxonomic revision (Aneesh et al., 2019).

Nerocila sp.

Synonyms

-

Morphological Description

A general account of the genus Nerocila and of some of its species can be found Hai-yan and Xin-zheng (2002) and Trilles et al. (2013).

Molecular Sequences

COI, LSU rRNA, 16S rRNA, and 18S rRNA of nine Nerocila spp. (see GenBank)

Association

Unknown

Cetacean Hosts/Basibionts

Pontoporia blainvillei (Gervais & d’Orbigny, 1844)

Geographic Range

-

Life Cycle

See Brusca (1978) and Smit et al. (2014) for a description of the cymothoid cycle.

Microhabitat

Neck region (Brownell, 1975)

Use as Indicator

-

Remarks

Brownell (1975) reported this ectoparasite on some La Plata dolphins that had been captured accidentally in gillnets, and interpreted that it could have been transmitted from sharks or other fish while all were trapped in the gillnet. Thus, the association with cetaceans should be viewed as accidental.

References

Brownell, 1975

Class Thecostraca Gruvel, 1905

Subclass Copepoda Milne Edwards, 1840

Order Harpacticoida Sars G.O., 1903

Family Balaenophilidae Sars G.O., 1910

The genus Balaenophilus Aurivillius P.O.C., 1879 contains two species that live in close association with marine vertebrates. B. unisetus Aurivillius P.O.C., 1879 is considered an obligate commensal of baleen whales that feeds on algae and/or baleen tissue (Vervoort and Tranter, 1961; Fernandez-Leborans, 2001; Badillo et al., 2007), causing no harm to hosts (Ogawa et al., 1997; Badillo et al., 2007). In contrast, B. manatorum (Ortiz et al., 1992) infects manatees and sea turtles; in the latter they can feed on healthy skin (Badillo et al., 2007; Domènech et al., 2017), sometimes producing extensive lesions (Crespo-Picazo et al., 2017). Thus, this species is considered an ectoparasite.

Balaenophilus unisetus (Aurivillius P.O.C., 1879)

Synonyms

-

Morphological Description

Aurivillius, 1879; Vervoort and Tranter, 1961; Bannister and Grindley, 1966

Molecular Sequences

-

Association

Obligate commensal

Cetacean Hosts/Basibionts

Balaenoptera borealis Lesson, 1828, B. edeni Anderson, 1878, B. musculus, B. physalus

Geographic Range

Arctic, Atlantic, eastern Pacific, Indian Ocean, Antarctica

Life Cycle

Aurivillius (1879) describes a nauplius and five copepodite stages preceding the adult phase. In the allied species B. manatorum nauplii and early copepodite stages are unable to swim, and copepodite V and adults can perform only short swimming excursions (Domènech et al., 2017). Thus, host bodily contact or closeness is likely necessary for transmission in both species.

Microhabitat

Baleen plates (Aurivillius, 1879; Cocks, 1885; Lillie, 1910; Scharff, 1913; Matthews, 1938b; Vervoort and Tranter, 1961; Rice, 1963; Gambell, 1964; Bannister and Grindley, 1966; Ichihara, 1966; Ichihara, 1978; Collet, 1986; Raga and Sanpera, 1986; Dalla Rosa and Secchi, 1997; Esteves et al., 2020), corner of the mouth (Raga and Sanpera, 1986)

Use as Indicator

-

Remarks

The presence of this species is likely underestimated since it can be easily overlooked without exhaustive inspection of baleen plates (Aurivillius, 1879; Vervoort and Tranter, 1961). It can sometimes be colonized by chonotrichous ciliates, acting as basibiont (Fernandez-Leborans, 2001).

References

Cocks, 1885; Aurivillius, 1879; Lillie, 1910; Collet, 1912; Scharff, 1913; Allen, 1916; Cornwall, 1927; Cornwall, 1928; Matthews, 1938b; Vervoort and Tranter, 1961; Rice, 1963; Gambell, 1964; Bannister and Grindley, 1966; Ichihara, 1966; Kawamura, 1969; Rice, 1977; Ichihara, 1978; Collet, 1986; Raga and Sanpera, 1986; Dalla Rosa and Secchi, 1997; Esteves et al., 2020

Family Harpacticidae Dana, 1846

Members of this family are mostly marine or brackishwater macroalgal associates, with a few freshwater species (Joon and Young, 1993).

Harpacticus pulex (Humes, 1964)

Synonyms

-

Morphological Description

Humes, 1964

Molecular Sequences

-

Association

Unknown

Cetacean Hosts/Basibionts

Tursiops truncatus

Geographic Range

-

Life Cycle

Unknown for this species, but naupliar and copepodite stages have been described for other Harpacticus spp. (e.g., Itô, 1976; Walker, 1981; Choi and Kim, 1994). Harpacticoids generally lack planktonic larval stages, but adults are active swimmers (e.g., Hicks, 1985; Palmer, 1988). It is thus plausible that transmission to bottlenose dolphin occurred during the adult phase.

Microhabitat

On ulcerated and sloughed skin (Humes, 1964)

Use as Indicator

-

Remarks

This species was described by Humes (1964) on captive marine mammals and has never been reported again. Species of Harpacticus Milne Edwards H., 1840 typically colonize seagrass, algal clumps or sandy and muddy bottoms (Ólafsson, 2001 and references therein), thus the occurrence of H. pulex on cetaceans is intriguing and perhaps forced by confinement conditions (Humes, 1964). Future re-examination of the taxonomic status of H. pulex is advisable.

References

Humes, 1964

Order Siphonostomatoida Burmeister, 1835

Family Caligidae Burmeister, 1835

The family Caligidae (“sea lice”) contains 30 genera (Walter and Boxshall, 2020); species of Caligus Müller O. F., 1785 and Lepeophtheirus Nordmann, 1832 have great economic relevance due to their impact on salmonid fish mariculture (Costello, 2006; Hemmingsen et al., 2020). Caligids use their siphon and a pair of mandibles to feed on fish skin (Kabata, 1974), causing ulcerations and even death to their hosts (Tørud and Håstein, 2008), but their impact on cetaceans has not yet been reported.

Caligus elongatus (Nordmann, 1832)

Synonyms

Caligus arcticus Brandes, 1956, C. kroyeri Milne Edwards, 1840, C. latifrons Wilson C.B., 1905, C. leptochilus Leuckart in Frey & Leuckart, 1847, C. lumpi Krøyer, 1863, C. rabidus Leigh-Sharpe, 1936, C. rissoanus Milne Edwards, 1840, C. trachypteri Krøyer, 1863

Morphological Description

Hemmingsen et al., 2020 and references therein

Molecular Sequences

COI (Øines and Heuch, 2005; Raupach et al., 2015; GenBank AY386272; AY386273; EF452647), 16S rRNA (Øines and Schram, 2008; GenBank AY660020), 18S rRNA (Huys et al., 2006; Øines and Schram, 2008; Mohrbeck et al., 2015; Khodami et al., 2017; GenBank JX845119-JX845131), 28S rRNA (Khodami et al., 2017; GenBank DQ180336; DQ180337; EU118301; EU118302)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Balaenoptera acutorostrata, Hyperodoon ampullatus

Geographic Range

North Atlantic (Hemmingsen et al., 2020)

Life Cycle

Two free-living planktonic nauplius stages, one free-swimming infective copepodid stage, and four chalimus stages and one adult stage attached to the host (Maran et al., 2013).

Microhabitat

Skin (O’Reilly, 1998; Ólafsdóttir and Shinn, 2013)

Use as Indicator

-

Remarks

This is a typical fish ectoparasite that has been reported on more than 80 species (Kabata, 1979; Agusti-Ridaura et al., 2019). Infections in cetaceans are exceptional and likely related to their occurrence close to cage farms (Ólafsdóttir and Shinn, 2013). The hyperparasitic monogenean Udonella caligorum Johnston, 1835, which typically attaches to fish copepods (Freeman and Ogawa, 2010), has been found on C. elongatus infecting common minke whales (Ólafsdóttir and Shinn, 2013).

References

O’Reilly, 1998; Ólafsdóttir and Shinn, 2013

Caligus rufimaculatus (Wilson C.B., 1905)

Synonyms

-

Morphological Description

Wilson, 1905; Takemoto and Luque, 2002; Kim et al., 2019

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Tursiops truncatus

Geographic Range

Western Atlantic (Benz et al., 2011)

Life Cycle

See C. elongatus (above).

Microhabitat

Skin (Benz et al., 2011)

Use as Indicator

-

Remarks

This species typically infects fish, but there is an exceptional record of adult individuals, including ovigerous females, on a carcass of bottlenose dolphin (Benz et al., 2011).

References

Benz et al., 2011

Lepeophtheirus crassus (Wilson & Bere, 1936)

Synonyms

Gloiopotes crassus Wilson & Bere, 1936

Morphological Description

Lewis, 1967

Molecular Sequences

-

Association

Ectoparasite

Cetacean Hosts/Basibionts

Delphinus delphis

Geographic Range

Western Atlantic, North Pacific, Indian Ocean (Lewis, 1967)

Life Cycle

Species of Lepeophtheirus have 2-4 chalimus stages and two preadult stages. The latter can be distinguished by their ability to detach and move over the surface of the host (Krøyer, 1834; see Hamre et al., 2013).

Microhabitat

Hyperparasitic on Remora australis (Bennett, 1840; Radford and Klawe, 1965)

Use as Indicator

-

Remarks

-

References

Radford and Klawe, 1965

Family Pennellidae Burmeister, 1835

Unlike other families of the order Siphonostomatoida, members of the family Pennellidae do have intermediate hosts, usually a fish or invertebrate (Kabata, 1979; Nagasawa et al., 1985; Suyama et al., 2021a and references therein). Mating seemingly occurs in the intermediate host and fertilized females attach to the final host in which they produce and release the eggs (Arroyo et al., 2002).

Pennella balaenoptera (Koren & Danielssen, 1877)

Synonyms

Pennella antarctica Quidor, 1913, P. anthonyi Quidor, 1913, P. balaenopterae Koren & Danielssen, 1877, P. cettei Quidor, 1913, P. charcoti Quidor, 1913

Morphological Description

Koren and Danielssen, 1877; Turner, 1905; Hogans, 1987, Hogans, 2017; Abaunza et al., 2001; Vecchione and Aznar, 2014; Suyama et al., 2021b

Molecular Sequences

COI (Fraija-Fernández et al., 2018)

Association

Mesoparasite. The head penetrates the blubber and musculature to feed on blood and expands as 2-3 cephalic horns in host’s tissue to enable attachment, whereas the trunk, genital complex, and abdominal plumes protrude and hang on the host body (Hogans, 1987; Abaunza et al., 2001; Schmidt and Roberts, 2009; Hogans, 2017).

Cetacean Hosts/Basibionts

Balaenoptera acutorostrata, B. bonaerensis, B. borealis, B. edeni, B. musculus, B. physalus, Delphinus delphis, Eubalaena australis, Feresa attenuata Gray, 1874, Globicephala melas, Grampus griseus, Hyperoodon ampullatus, Kogia breviceps, Lissodelphis borealis (Peale, 1848), Megaptera novaeangliae, Mesoplodon bidens (Sowerby, 1804), M. carlhubbsi Moore, 1963, M. mirus, Orcinus orca, Phocoena phocoena, Physeter macrocephalus, Stenella coeruleoalba, Tursiops truncatus, Ziphius cavirostris

Geographic Range

Atlantic, Pacific, Mediterranean, Indian Ocean, Antarctica

Life Cycle

Based on information from other penellids, its life cycle is believed to include a pelagic naupliar stage and several copepodid and chalimus instars on the intermediate (squid) hosts; females are fertilized as late chalimi and undergo a pelagic phase to search out the definitive host, where they metamorphose into the adult stage (Schmidt and Roberts, 2009). In the case of P. balaenoptera, only adult females and the first naupliar stage are known (Arroyo et al., 2002). However, the copepodid and chalimus stages have been described for P. filosa (Linnaeus, 1758) collected from squids (Rose and Hamon, 1953; see also Arroyo et al., 2002), and P. filosa is now considered conspecific with P. balaenoptera (Fraija-Fernández et al., 2018; see also the Discussion). The life cycle of P. balaenoptera could be primarily oceanic because this species is more prevalent on pelagic versus coastal cetaceans (Fraija-Fernández et al., 2018).

Microhabitat

Commonly on the flanks (Raga and Sanpera, 1986; Aznar et al., 1994; Gomerčić et al., 2006; Souza et al., 2005; Ciçek et al., 2007; Foskolos et al., 2017), but occasionally reported on the head (Pouchet and Beauregard, 1889; Foskolos et al., 2017) and flukes (Foskolos et al., 2017). A single record on a whale sucker, Remora australis (Bennett, 1840) attached to a dolphin (Radford and Klawe, 1965).

Use as Indicator

It may be an indicator of compromised health in cetacean hosts (Mackintosh and Wheeler, 1929; Aznar et al., 2005; Vecchione and Aznar, 2014).

Remarks

Since P. balaenoptera is the only recognized species of Pennella Oken, 1815 parasitizing cetaceans, we consider that the published records of Pennella sp. in cetaceans could be assigned to this species, unless proven otherwise. Dailey et al. (2002) reported P. balaenoptera in one northern elephant seal, Mirounga angustirostris (Gill, 1866). Recently, molecular analyses revealed that specimens of P. balaenoptera collected from several cetaceans in western Mediterranean could be conspecific with P. filosa from swordfish, Xiphias gladiusLinnaeus, 1758, collected in the same area (Fraija-Fernández et al., 2018). This finding begs further attention (see the Discussion).

References

Steenstrup and Lütken, 1861; Sars, 1866; Pouchet and Beauregard, 1889; Anthony and Calvet, 1905; Turner, 1905; Bouvier, 1910; Japha, 1910; Mörch, 1911; Collet, 1912; Quidor, 1912; Liouville, 1913; Olsen, 1913; Scharff, 1913; Cornwall, 1927; Cornwall, 1928; Mackintosh and Wheeler, 1929; Van Oorde-de Lint and Schuurmans-Stekhoven, 1936; Matthews, 1938b; Allen, 1941; Stephensen, 1942; Mizue, 1950; Nishiwaki and Hayashi, 1950; Mizue and Murata, 1951; Nishiwaki and Oye, 1951; Ohno and Fujino, 1952; Kakuwa et al., 1953; Barnard, 1955; Chapman and Santler, 1955; Clarke, 1956; Zenkovich, 1956; Tomilin, 1957; Rice, 1963; Radford and Klawe, 1965; Kawamura, 1969; Berzin, 1972; Rice, 1977; Rice, 1978; Dailey and Stroud, 1978; Dailey and Walker, 1978; Ivashin and Golubovsky, 1978; Greenwood et al., 1979; Best, 1982; Raga and Carbonell, 1985; Raga and Sanpera, 1986; Smiddy, 1986; Mead, 1989; Bushuev, 1990; Dorsey et al., 1990; Sedlak-Weinstein, 1990 (unpubl.); Dailey and Vogelbein, 1991; Raga and Balbuena, 1993; Aznar et al., 1994; Aznar et al., 2005, unpubl.; Raga, 1994; Vecchione, 1994; Cerioni and Mariniello, 1996; Kuramochi et al., 1996; Araki et al., 1997; Kuramochi et al., 2000; McAlpine et al., 1997; Terasawa et al., 1997; Uchida, 1998; Walker and Hanson, 1999; Cornaglia et al., 2000; Uchida and Araki, 2000; Abaunza et al., 2001; Arroyo et al., 2002; Brzica, 2004; Gomerčić et al., 2006; Souza et al., 2005; Ciçek et al., 2007; Kautek et al., 2008; Martín et al., 2011; Rosso et al., 2011; Bertulli et al., 2012; Ólafsdóttir and Shinn, 2013; Tonay and Dede, 2013; Danyer et al., 2014; Öztürk et al., 2015; Delaney et al., 2016; Birincioğlu et al., 2017; Foskolos et al., 2017; Hogans, 2017; Fraija-Fernández et al., 2018; IJsseldijk et al., 2018; Marcer et al., 2019; Methion and Díaz López, 2019; Herr et al., 2020; Orrell, 2020; Ten et al., unpubl.

Subclass Cirripedia Burmeister, 1834

Order Balanomorpha Pilsbry, 1916

Family Balanidae Leach, 1817

Thoracic barnacles (Infraclass Thoracica) are sessile, hermaphroditic crustaceans that attach to diverse substrata and have specialized cirri to filter organic particles from water for feeding (Anderson, 1994). The life cycle typically includes a free-swimming nauplius larva that undergoes several (usually 6) moults, and a non-feeding cypris larva that searchs out, and attaches to, an appropriate substratum. Subsequent metamorphosis leads to a juvenile filter-feeding version of the adult (Darwin, 1854; Cornwall, 1955; Maruzzo et al., 2012). The cyprid stage is unique to barnacles and shows little morphological variability across species, even though they can attach to strikingly different substrata (Maruzzo et al., 2012; Dreyer et al., 2020).

This family originally encompassed all sessile barnacles (Leach, 1817), but whale barnacles and most sea turtles were later re-classified (Pitombo, 2004; see below). Most members of Balanidae are intertidal, although some species are facultative epibionts, e.g., those found on sea turtles, such as Balanus trigonus (Ten et al., 2019).

Balanus trigonus (Darwin, 1854)

Synonyms

-

Morphological Description

Darwin, 1854

Molecular Sequences

COI (Chen et al., 2013; Ashton et al., 2016; GenBank JQ035523; JQ035524; MF974362; MK308152; MK308163; MK308322; MK496572; MT258956; MW277718; MW277822), EF1a (Chan et al., 2017), RPII (Chan et al., 2017), 12S rRNA (Endo et al., 2010; Kamiya et al., 2012; Pérez-Losada et al., 2014; Chan et al., 2017; GenBank GU983669; GU983670), 16S rRNA (Chan et al., 2017; GenBank JQ035491; JQ035492), 18S rRNA (Pérez-Losada et al., 2014; Chan et al., 2017), 28S rRNA (Pérez-Losada et al., 2014), and the complete mitochondrial genome (GenBank MW646099; MZ049958; NC_056392)

Association

Facultative commensal

Cetacean Hosts/Basibionts

Megaptera novaeangliae

Geographic Range

Cosmopolitan (Werner, 1967)

Life Cycle

Metamorphosis from nauplius to cyprid stage is speeded up at higher water temperature, i.e., 4-11 days (Thiyagarajan et al., 2003). Recruitment is seasonal and takes place at approximately 24°C (Lam, 2000).

Microhabitat

As a hyperepibiont on the barnacle Coronula diadema (Cornwall, 1928)

Use as Indicator

-

Remarks

-

References

Cornwall, 1928

Balanus spp.

Synonyms

-

Morphological Description

A general account of Balanus spp. can be found in Darwin (1854); Newman and Ross (1976), and Pitombo (2004).

Molecular Sequences

> 5,000 results in GenBank

Association

Presumably facultative commensal

Cetacean Hosts/Basibionts

Megaptera novaeangliae

Geographic Range

-

Life Cycle

Information for Balanus spp. is available from Brown and Roughgarden (1985) and Maruzzo et al. (2012).

Microhabitat

As a hyperepibiont on the barnacle Coronula spp. (Rice, 1963)

Use as Indicator

-

Remarks

Balanus spp., as in Rice (1963), may correspond to a single or several species.

References

Rice, 1963

Megabalanus tintinnabulum (Linnaeus, 1758)

Synonyms

Balanus tintinnabulum (Linnaeus, 1758), Lepas tintinnabulum Linnaeus, 1758

Morphological Description

Darwin, 1854; Barnard, 1924

Molecular Sequences

COI (Chen et al., 2013; Ashton et al., 2016; GenBank JQ035525-JQ035527), H3 (Pérez-Losada et al., 2004), 12S rRNA (Pérez-Losada et al., 2004), 16S rRNA (Pérez-Losada et al., 2004; GenBank JQ035505-JQ035508), 18S rRNA, 28S rRNA (Pérez-Losada et al., 2004), and the complete mitochondrial genome (Che et al., 2019; GenBank MW281857; NC_056162)

Association

Facultative commensal

Cetacean Hosts/Basibionts

Unidentified whale

Geographic Range

Tropical or sub-tropical to warm temperate waters (Otani et al., 2007)

Life Cycle

In the Arabian Sea, barnacles breed at lower temperatures, i.e., less than 24 °C in winter vs. > 28 °C in summer; and grow at a rate of 0.44-0.63 mm/year (Ali and Ayub, 2021).

Microhabitat

As a hyperepibiont on the barnacle Coronula diadema (Barnard, 1924)

Use as Indicator

-

Remarks

-

References

Barnard, 1924

Family Coronulidae Leach, 1817

Coronulids are typically obligate epibionts of sea turtles, sirenians or cetaceans (Marlow, 1962; Hayashi et al., 2013). One species, Chelonibia testudinaria (Linnaeus, 1758), can also be found on crustaceans and sea snakes, and even on inanimate substrata (Frazier and Margaritoulis, 1990; Cheang et al., 2013).

Cetopirus complanatus (Mörch, 1852)

Synonyms

Coronula balaenaris (Gmelin, 1791), C. complanata (Mörch, 1852)

Morphological Description

Darwin, 1854; Pilsbry, 1916; Scarff, 1986; Pastorino and Griffin, 1996; Seilacher, 2005

Molecular Sequences

-

Association

Obligate commensal

Cetacean Hosts/Basibionts

Eubalaena australis, E. glacialis

Geographic Range

Arctic, Atlantic, eastern North Pacific, Antarctica

Life Cycle

-

Microhabitat

Lips, fins (Guiler, 1956; Best, 1991)

Use as Indicator

Shell plate remains of C. complanatus in Nerja Cave (Málaga, southern Spain) were used as indirect evidence of whale consumption by humans in the Upper Magdalenian (Álvarez-Fernández et al., 2013) and of the presence and migration of right whales (Balaenidae) in the Mediterranean during the Early Pleistocene (Collareta et al., 2016; Bosselaers et al., 2017).

Remarks

There is a single record on Megaptera novaeangliae (Guiler, 1956), but it was probably confused with Coronula reginae (Holthuis et al., 1998).

References

Chemnitz, 1785; Chemnitz and Martini, 1790; Darwin, 1854; Gruvel, 1903; Pilsbry, 1916; Nilsson-Cantell, 1931; Best, 1991

Coronula diadema (Linnaeus, 1767)

Synonyms

-

Morphological Description

Darwin, 1854; Dall, 1872; Cornwall, 1955; Scarff, 1986; Anderson, 1994

Molecular Sequences

H3, 12S rRNA, 16S rRNA, 18S rRNA, 28S rRNA (Hayashi et al., 2013)

Association

Obligate commensal

Cetacean Hosts/Basibionts

Typical from Megaptera novaeangliae but some records on Balaenoptera bonaerensis, B. borealis, B. musculus, B. physalus, Eubalaena glacialis, Hyperoodon ampullatus and Physeter macrocephalus

Geographic Range

Atlantic, Pacific, Indian Ocean, Antarctica

Life Cycle

A one-year life cycle has been proposed (Angot, 1951; Newman and Abbott, 1980). Larval release and settlement seem to occur in warm waters (20-25°C in September-October off Madagascar), whereas adult development may take place during whale migration to the poles (Angot, 1951). Details of development from the embryo to the juvenile stage have been studied in vitro (Nogata and Matsumura, 2006). Larval settlement is likely induced by chemical cues from whale skin, such as alpha-2-macroglobulin (Nogata and Matsumura, 2006).

Microhabitat

Rostrum, lips, lower jaw, fins (Dall, 1872; Pilsbry, 1916; Nilsson-Cantell, 1930a, Nilsson-Cantell, 1930c; Stephensen, 1938; Scheffer, 1939; Tomilin, 1957; Scarff, 1986)

Use as Indicator

Isotope analyses (δ18O) of shells of C. diadema and its direct ancestor C. bifida (Dominici et al., 2011) accurately trace current and Pleistocene-Miocene whale migration routes (Buckeridge et al., 2018; Collareta et al., 2018a; Collareta et al., 2018b; Buckeridge et al., 2019; Taylor et al., 2019). Fossil remains have also been used to infer humpback whale migration routes and breeding areas in the Late Pliocene-Pleistocene (Bianucci et al., 2006a; Bianucci et al., 2006b). Present-day observations of Coronula sp. (Olsen, 1913; Angot, 1951) helped to elucidate right whales’ migration from warmer waters (Best, 1991). The co-occurrence of C. bifida with Cetopirus complanatus may indicate that whales belonging to Balaenopteridae and Balaenidae shared breeding grounds during the Early Pleistocene (Collareta et al., 2016). Interestingly, the presence of C. diadema on cetaceans other than humpback whales could also indicate some geographical overlap between species (see the Discussion). Coronula spp. have been suggested as natural marks for individual photo-identification (Franklin et al., 2020). The pattern of attachment of barnacles (presumably C. diadema) indicates non-uniform water flow over humpback whale flippers and has shed light on the function of leading-edge tubercles (Fish and Battle, 1995). Rubbing against rocks and the sea bottom has been observed in humpback whales, which may be an attempt to remove these barnacles (Tomilin, 1957) and could limit its application as an indicator.

Remarks

This species serves as a basibiont of the facultative epibionts Balanus spp., Conchoderma auritum (Linnaeus, 1767), and Megabalanus tintinnabulum, and of the hydroid Obelia dichotoma (Linnaeus, 1758) (Liouville, 1913; Barnard, 1924; Cornwall, 1928; Stephensen, 1938; Rice, 1963; Kim et al., 2020).

References

Dall, 1872; Scammon, 1874; Fischer, 1884; Sars, 1890-1895; Borradaile, 1903; Liouville, 1913; Pilsbry, 1916; Cornwall, 1924; Cornwall, 1927; Cornwall, 1928; Nilsson-Cantell, 1930a; Nilsson-Cantell, 1930c, Hiro, 1935; Hiro, 1938; Stephensen, 1938; Nilsson-Cantell, 1939; Scheffer, 1939; Mizue and Murata, 1951; Rees, 1953; Tomilin, 1957; Nishiwaki, 1959; Cockrill, 1960; Wolff, 1960; Rice, 1963; Nilsson-Cantell, 1978; O’Riordan, 1979; Scarff, 1986; Paterson and Van Dyck, 1991; Young, 1991; Holthuis and Fransen, 2004; Félix et al., 2006; Nogata and Matsumura, 2006; Wirtz et al., 2006; Jones, 2010; Ávila et al., 2011; Jiménez et al., 2011; Hayashi, 2012; Angeletti et al., 2014; Kim et al., 2020; Minton et al., 2020 (in press.); Tasmanian Museum and Art Gallery, 2020; Ueda, 2020; Ten et al., unpubl.

Coronula reginae (Darwin, 1854)

Synonyms

-

Morphological Description

Darwin, 1854; Scarff, 1986

Molecular Sequences

-

Association

Obligate commensal

Cetacean Hosts/Basibionts

Balaenoptera bonaerensis, B. borealis, B. musculus, B. physalus, Eubalaena glacialis, Megaptera novaeangliae; single report on Delphinapterus leucas and Physeter macrocephalus

Geographic Range

Arctic, Atlantic, North Pacific, Indian Ocean, Antarctica

Life Cycle

-

Microhabitat

Lower jaw, flukes (Cockrill, 1960; Scarff, 1986)

Use as Indicator

See Coronula diadema (above).

Remarks

-

References

Collet, 1912; Pilsbry, 1916; Cornwall, 1927; Cornwall, 1928; Mackintosh and Wheeler, 1929; Nilsson-Cantell, 1930a; Nilsson-Cantell, 1930b; Hiro, 1938; Stephensen, 1938; Scheffer, 1939; Rees, 1953; Guiler, 1956; Tomilin, 1957; Cockrill, 1960; Rice, 1963; Klinkhart, 1966; Kawamura, 1969; Rice, 1977; Nilsson-Cantell, 1978; Silva-Brum, 1985; Scarff, 1986; Bushuev, 1990; Smiddy and Berrow, 1992; Holthuis and Fransen, 2004; Ten et al., unpubl.

Cryptolepas rhachianecti (Dall, 1872)

Synonyms

-

Morphological Description

Dall, 1872; Cornwall, 1955; Achituv, 1998; Seilacher, 2005

Molecular Sequences

H3, 12S rRNA, 16S rRNA, 18S rRNA, 28S rRNA (Hayashi et al., 2013)

Association

Obligate commensal, although Tomilin (1957) considered this species to be potentially harmful because it can impede whales’ movement and damage their skin.

Cetacean Hosts/Basibionts

Eschrichtius robustus; once reported on Delphinapterus leucas and Orcinus orca

Geographic Range

North Pacific; one record in the Gulf of Mexico (eastern North Atlantic)

Life Cycle

Gray whales wintering in waters off California and Mexico bear large and small specimens of C. rhachianecti when migrating northward, but only large barnacles when sighted during the southbound migration (Rice and Wolman, 1971). This would suggest that larval settlement occurs in wintering areas. This interpretation is supported by the observation that belugas held captive in San Diego Bay have C. rhachianecti in synchrony with gray whale northward migration (Rice and Wolman, 1971; Ridgway et al., 1997). Vertical shell growth is 0.12 mm/day (Killingley, 1980).

Microhabitat

Rostrum, lips, throat, peduncle, fins (Kasuya and Rice, 1970; Briggs and Morejohn, 1972)

Use as Indicator

Isotope analysis (δ18O) and geographical patterns of occurrence of fossilized remains have helped to reveal gray whale migration routes (Killingley, 1980; Bosselaers and Collareta, 2016; Taylor et al., 2019). Small size of barnacles and other features (appearance and associated scarring) have been used to identify calves of gray whale in photo-identification studies (Bradford et al., 2011). Barnacle orientation reflects waterflow patterns on gray whales (Kasuya and Rice, 1970; Briggs and Morejohn, 1972). Greater abundance of C. rachianecti on the left side of the head of gray whales may indicate that the right side is used predominantly for benthic feeding (Kasuya and Rice, 1970). In fact, right-sided feeding bias has been observed in some cetaceans (e.g., Clapham et al., 1995; Marino and Stowe, 1997; Karenina et al., 2016), including gray whales (e.g., Woodward and Winn, 2006).

Remarks

-

References

Dall, 1872; Pilsbry, 1916; Rice, 1963; Roest, 1970; Rice and Wolman, 1971; Briggs and Morejohn, 1972; Leung, 1976; Wellington and Anderson, 1978; Sullivan and Houck, 1979; Achituv, 1998; Weller et al., 1999; Takeda and Ogino, 2005; Sokolov and Arsen'ev, 2006; Murase et al., 2014; Scordino et al., 2017; Kasuya and Rice, 1970; Killingley, 1980; Swartz, 1981; Samaras, 1989; Ridgway et al., 1997; Findley and Vidal, 2002

Tubicinella major (Lamarck, 1802)

Synonyms

-

Morphological Description

Darwin, 1854; Seilacher, 2005

Molecular Sequences

-

Association

Obligate commensal, although Tomilin (1957) considered this species to be potentially harmful because it can impede whales’ movement and damage their skin.

Cetacean Hosts/Basibionts

Eubalaena australis; once reported on Balaenoptera borealis and E. glacialis

Geographic Range

Atlantic, western South Pacific, Antarctica

Life Cycle

-

Microhabitat

Upper jaw, callosities, forehead, over the eye (Pilsbry, 1916; Scarff, 1986)

Use as Indicator

Shell plate remains of T. major found in Nerja Cave (Málaga, southern Spain) were used as indirect evidence of whale consumption by humans in the Upper Magdalenian (Álvarez-Fernández et al., 2013).

Remarks

Reported as a basibiont of facultative epibionts of the genus Conchoderma (Liouville, 1913).

References

Worm, 1655; Marloth, 1900; Gruvel, 1903; Liouville, 1913; Pilsbry, 1916; Reeb et al., 2007

Xenobalanus globicipitis (Steenstrup, 1852)

Synonyms

-

Morphological Description

Darwin, 1854; Cornwall, 1955; Rajaguru and Shantha, 1992; Anderson, 1994; Seilacher, 2005

Molecular Sequences

COI (Pérez-Losada et al., 2014), H3, 12S rRNA, 16S rRNA, 18S rRNA, 28S rRNA (Hayashi et al., 2013)

Association

Obligate commensal

Cetacean Hosts/Basibionts

Balaenoptera acutorostrata, B. bonaerensis, B. borealis, B. edeni, B. musculus, B. physalus, Delphinus delphis, Feresa attenuata, Globicephala macrorhynchus, G. melas, Grampus griseus, Kogia sp., Lagenodelphis hosei Fraser, 1956, Lissodelphis borealis, Megaptera novaeangliae, Mesoplodon bidens, M. mirus, Neophocaena asiaeorientalis Pilleri & Gihr, 1972, N. phocaenoides (Cuvier, 1829), Orcinus orca, Peponocephala electra, Phocoena phocoena, P. sinus Norris & McFarland, 1958, P. spinnipinnis (Burmeister, 1865), Physeter macrocephalus, Pontoporia blainvillei, Pseudorca crassidens, Sagmatias obliquidens (Gill, 1865), S. obscurus, Sotalia fluviatilis (Gervais & Deville in Gervais, 1853), S. guianensis (Van Beneden, 1864), Sousa plumbea (G. Cuvier, 1829), Stenella attenuata, S. clymene, S. coeruleoalba, S. frontalis (Cuvier, 1829), S. longirostris, Steno bredanensis, Tursiops aduncus, T. truncatus, Ziphius cavirostris

Geographic Range

Cosmopolitan (Arctic, Atlantic, Pacific, Mediterranean, South China Sea, Indian Ocean, Antarctica)

Life Cycle

Under experimental conditions at 28°C, the nauplii develop into cyprids in c. 8 days of hatching (Dreyer et al., 2020). Cyprids are similar to those of other barnacles but show variation in the structures that contact the substratum (Dreyer et al., 2020). In Guiana dolphins, Sotalia fluviatilis, off southern Brazil, field observations suggest that barnacle growth rate is initially fast and slows down after c. 30 days; sexual maturity seems to be reached in 40-45 days, and life span does not exceed one year (Flach et al., 2021).

Microhabitat

Trailing edge of dorsal fin, pectoral flippers, and mostly tail flukes (Calman, 1920; Barnard, 1924; Cornwall, 1927; Cornwall, 1928; Pope, 1958; Caldwell et al., 1971; Devaraj and Bennet, 1974; Bryden, 1976; Rice, 1978; Greenwood et al., 1979; Bane and Zullo, 1980; Spivey, 1980; Raga et al., 1983b; Ross, 1984; Raga and Sanpera, 1986; Brownell et al., 1987; Mead and Potter, 1990; Rajaguru and Shantha, 1992; Van Waerebeek et al., 1993; Watson et al., 1994; Jefferson et al., 1995; Reyes and Van Waerebeek, 1995; Araki et al., 1997; Orams and Schuetze, 1998; Rittmaster et al., 1999; Vidal et al., 1999; Barros and Stolen, 2001; Parsons et al., 2001; Resendes et al., 2002; Berland et al., 2003; Di Beneditto and Ramos, 2004; Palacios et al., 2004; Kane et al., 2008; Bearzi and Patonai, 2010; Best and Meÿer, 2010; Carvalho et al., 2010; Ribeiro et al., 2010; Foote et al., 2011; Karaa et al., 2011; Martín et al., 2011; Oliveira et al., 2011; Rosso et al., 2011; Díaz-Aguirre et al., 2012; González et al., 2012; Ólafsdóttir and Shinn, 2013; Towers et al., 2013; Whitehead et al., 2014; Díaz-Gamboa, 2015; Kim and Sohn, 2016; Methion and Díaz López, 2019; Pacheco et al., 2019; Herr et al., 2020; Matthews et al., 2020; Siciliano et al., 2020; Visser et al., 2020; Flach et al., 2021); also reported on the head (Samaras, 1989; Engel, 1994) and on a facial lesion (Alves-Motta et al., 2020).

Use as Indicator

The high detectability of X. globicipitis from visual surveys makes it applicable for individual marking of cetaceans (Visser et al., 2020) and as a multifaceted indicator. First, differences in its prevalence have been used to trace cetacean long-distance migrations (Best, 1982; Bushuev, 1990; Matthews et al., 2020; Ten et al., unpubl.) and to discriminate ecological stocks (Kawamura, 1969; Bushuev, 1990; Toth et al., 2012; Towers et al., 2013; Urian et al., 2019; Silva et al., 2020) and climate change-derived shifts in cetacean distribution (Visser et al., 2020). Second, its settlement patterns on hosts, which seem mainly driven by water flow, have been used to investigate cetacean swimming and hydrodynamics (Carrillo et al., 2015; Moreno-Colom et al., 2020). Lastly, the higher prevalence on immunosuppressed hosts highlights its potential as an indicator of health status in cetacean populations (Aznar et al., 1994; Aznar et al., 2005).

Remarks

-

References

Steenstrup, 1852; Darwin, 1854; Hoek, 1883; True, 1890; Richard and Neuville, 1897; Weltner, 1897; Gruvel, 1905; Gruvel, 1912; Collet, 1912; Liouville, 1913; Gruvel, 1920; Calman, 1920; Nilsson-Cantell, 1921; Barnard, 1924; Broch, 1924; Cornwall, 1927; Cornwall, 1928; Mackintosh and Wheeler, 1929; Nilsson-Cantell, 1930a; Richard, 1936; Matthews, 1938b; Heldt, 1950; Cornwall, 1955; Pope, 1958; Rice, 1963; Zullo, 1963; Stubbings, 1965; Pilleri, 1967; Dollfus, 1968; Kawamura, 1969; Pilleri and Gihr, 1969; Pilleri and Knuckey, 1969; Pilleri, 1970; Rice, 1977; Rice, 1978; Caldwell et al., 1971a; Devaraj and Bennet, 1974; Brownell, 1975; Mead, 1975; Bryden, 1976; Spivey, 1977; Dailey and Walker, 1978; Greenwood et al., 1979; Bane and Zullo, 1980; Spivey, 1980; Raga et al., 1982; Raga et al., 1983b; Ross, 1984; Raga and Carbonell, 1985; Gittings et al., 1986; Raga and Sanpera, 1986; Brownell et al., 1987; Rappé, 1988; Rappé and Van Waerebeek, 1988; Pinedo et al., 1989; Samaras, 1989; Bushuev, 1990; Mead and Potter, 1990; Van Waerebeek et al., 1990; Young, 1991; Duignan et al., 1992; Rajaguru and Shantha, 1992; Aguilar and Raga, 1993; Raga and Balbuena, 1993; Van Waerebeek et al., 1993; Aznar et al., 1994; Aznar et al., 2005; Aznar et al., 2016, unpubl.; Engel, 1994; Fertl, 1994; Watson et al., 1994; Jefferson et al., 1995; Reyes and Van Waerebeek, 1995; Azevedo et al., 1996; Fertl et al., 1996; Araki et al., 1997; Orams and Schuetze, 1998; Uchida, 1998; Rittmaster et al., 1999; Vidal et al., 1999; Di Beneditto and Ramos, 2001; Guerrero-Ruiz and Urbán, 2000; Kuramochi et al., 2000; Uchida and Araki, 2000; Addink and Smeenk, 2001; Barros and Stolen, 2001; Parsons et al., 2001; Danilewicz et al., 2002; Louella and Dolar, 2002; Resendes et al., 2002; Berland et al., 2003; Di Beneditto and Ramos, 2004; Karuppiah et al., 2004; Palacios et al., 2004; Watson and Gee, 2005; Bellido et al., 2006; Sakai et al., 2006; Best, 2007; Pitman et al., 2007; Toth-Brown and Hohn, 2007; Kane et al., 2008; Kautek et al., 2008; Rotstein et al., 2009; Sakai et al., 2009; Bearzi and Patonai, 2010; Best and Meÿer, 2010; Carvalho et al., 2010; Ribeiro et al., 2010; Weir, 2010; Foote et al., 2011; Karaa et al., 2011; Martín et al., 2011; Oliveira et al., 2011; Rosso et al., 2011; Bertulli et al., 2012; Díaz-Aguirre et al., 2012; González et al., 2012; Hayashi, 2012; Pugliese et al., 2012; Toth et al., 2012; Ólafsdóttir and Shinn, 2013; Towers et al., 2013; Lane et al., 2014; Whitehead et al., 2014; Díaz-Gamboa, 2015; Carrillo et al., 2015; Blum and Fong, 2016; Prestridge, 2016; Kim and Sohn, 2016; Denkinger and Alarcon, 2017; Donnelly et al., 2018; Ronje et al., 2018; Cortés-Peña, 2019; Methion and Díaz López, 2019; Pacheco et al., 2019; Urian et al., 2019; Alves-Motta et al., 2020; Gagnon and Torgersen, 2020; Gómez-Hernández et al., 2020; Herr et al., 2020; Matthews et al., 2020; Minton et al., 2020 (in press); Minussi, 2020; Moreno-Colom et al., 2020; Natural History Museum, 2020; Orrell, 2020; Siciliano et al., 2020; Silva et al., 2020; Ueda, 2020; Vargas-Bravo et al., 2020; Visser et al., 2020; CW Azores, 2021; Flach et al., 2021; iNaturalist, 2021; Ten et al., unpubl.

Order Scalpellomorpha Buckeridge & Newman, 2006

Family Lepadidae Darwin, 1852

Lepadids are oceanic fugitive species with relatively rapid growth and require a hard substratum to settle (e.g., Skerman, 1958; Patel, 1959; Southward, 1987; Harper, 1995; Hinojosa et al., 2006; Fraser et al., 2011; Wegner and Cartamil, 2012; Frick and Pfaller, 2013; Schiffer and Herbig, 2016). Overall, they are generalistic settlers on floating objects, be living or inanimate. This feature makes it often difficult to ascertain whether settlement on putative basibionts is pre- or postmortem (e.g., Magni et al., 2015; Ten et al., 2019). However, some degree of specialization for living cetaceans seems to be apparent especially for Conchoderma auritum (see below). Apart from cetaceans, other basibionts for species of Lepas and Conchoderma are, inter alia, bull kelps (Fraser et al., 2011; López et al., 2017), sea turtles (Ten et al., 2019), and even human corpses (Magni et al., 2015). Extensive description of the metamorphosis for species of this family is provided by Darwin (1854).

Conchoderma auritum (Linnaeus, 1767)

Synonyms

Conchoderma leporinum Olfers, 1814, Lepas aurita Linnaeus, 1767, Otion stimpsoni Dall, 1872

Morphological Description

Darwin, 1854; Dall, 1872; Monod, 1938; Cornwall, 1955

Molecular Sequences

COI (Ashton et al., 2016; GenBank MT563423; MT563438; MT563441), H3 (Pérez-Losada et al., 2008), 12S rRNA (Endo et al., 2010), 16S rRNA (Tomioka et al., 2020), 18S rRNA, 28S rRNA (Pérez-Losada et al., 2008)

Association

Facultative commensal. However, Newman and Abbott (1980) considered that this species might actually be an obligate commensal on cetaceans because most records of this species involve, as substrata, the shells of coronulid barnacles and/or on exposed hard surfaces of these mammals, e.g., baleens or tusks of ziphids. Rasmussen (1980) postulated that C. auritum prefers hard substrates in motion, although this species has also been reported on animate objects (see below).

Cetacean Hosts/Basibionts

Balaenoptera acutorostrata, B. bonaerensis, B. borealis, B. musculus, B. physalus, Berardius bairdii, Eschrichtius robustus, Eubalaena glacialis, Feresa attenuata, Globicephala macrorhynchus, G. melas, Hiperoodon ampullatus, H. planifrons, Megaptera novaeangliae, Mesoplodon bidens, M. densirostris (de Blainville, 1817), M. europaeus, M. hectori (Gray, 1871), M. layardii (Gray, 1865), M. mirus, M. stejnegeri True, 1885, Neophocaena phocaenoides, Peponocephala electra, Physeter macrocephalus, Pontoporia blainvillei, Stenella attenuata, S. frontalis, S. longirostris, Tursiops aduncus, T. truncatus, Ziphius cavirostris

Geographic Range

Cosmopolitan

Life Cycle

Growth rate of metamorphosed individuals are available only from inanimate substrata (0.1-1.0 mm/day; Il'in et al., 1978; Rasmussen, 1980; Dalley and Crisp, 1981). At a mean temperature of 23°C, the capitulum of newly recruited individuals can reach 1 mm long in just two days, and 6 mm in 9 days; in older individuals, growth rate estabilizes at 0.55 mm/day (Dalley and Crisp, 1981). Cyprids of C. auritum sampled along the Atlantic Ocean were found in low concentration between 25° N and 34 °S (Dalley and Crisp, 1981).

Microhabitat

On baleen plates (Nilsson-Cantell, 1930a; Nilsson-Cantell, 1939; Omura, 1950a; Christensen, 1985; Raga and Sanpera, 1986; Ólafsdóttir and Shinn, 2013); odontocete teeth (Beneden, 1870; Ohlin, 1893; Lillie, 1910; Hamilton, 1914; Broch, 1924; Nansen, 1925; Nilsson-Cantell, 1930a; Nilsson-Cantell, 1930c; Gauthier, 1938; Monod, 1938; Nilsson-Cantell, 1939; Scheffer, 1939; Fabian, 1950; Mizue, 1950; Omura, 1950a; Omura et al., 1955; Sergeant and Fisher, 1957; Tomilin, 1957; Wolff, 1960; Marlow, 1963; Rice, 1963; Morris and Mowbray, 1966; Pilleri, 1969a; Pilleri, 1969b; Caldwell et al., 1971b; Van Bree, 1971; Fordyce et al., 1979; Dixon, 1980; Baker, 1983; Pastene et al., 1990; Balbuena, 1991; Debrot, 1992; Rodríguez-López and Mignucci-Giannoni, 1999; Soto, 2001; O’Connor and Franco, 2003; Bermúdez-Villapol et al., 2006; Van Waerebeek et al., 2008; Holmes and Franco, 2010; Martín et al., 2011; Bachara and Gullan, 2016; Foskolos et al., 2017; Tomioka et al., 2020), and on the coronulid barnacles C. diadema (Beneden, 1870; Dall, 1872; Sars, 1880; Gruvel, 1911; Mörch, 1911; Liouville, 1913; Borradaile, 1916; Pilsbry, 1916; Broch, 1924; Cornwall, 1924; Cornwall, 1927; Cornwall, 1928; Nilsson-Cantell, 1930a; Nilsson-Cantell, 1930c; Hiro, 1935; Stephensen, 1938; Nilsson-Cantell, 1939; Scheffer, 1939; Tomilin, 1957; Rice, 1963; Clarke, 1966; Newman and Ross, 1971; Holthuis and Fransen, 2004; Kim et al., 2020), C. reginae (Nilsson-Cantell, 1930a; Nilsson-Cantell, 1939; Wolff, 1960; Rice, 1963; Clarke, 1966; Newman and Ross, 1971), and X. globicipitis (Ten et al., unpubl.). Also, on deformed or injured jaws that leave the teeth exposed (Davis, 1874; Mörch, 1911; Matthews, 1938c; Chapman and Santler, 1955; Clarke, 1956; Nasu, 1958; Cockrill, 1960; Wolff, 1960; Slijper, 1962; Spaul, 1964; Clarke, 1966; Pilleri, 1969b; Beach, 2015). Once recorded as an hyperepibiont on P. balaenoptera (Nilsson-Cantell, 1930a).

Use as Indicator

Holmes and Franco (2010) observed several individuals of C. auritum on the left tooth of Sowerby’s beaked whale, Mesoplodon bidens, but none on the right tooth. These authors speculated that the barnacles could indicate some type of chirality during feeding, which may hinder barnacle development on the right side (see Cryptolepas rachianecti above). On the other hand, the presence of C. auritum has been suggested as an indicator of previous interaction of cetaceans with fisheries since these barnacles can attach on scarred mouth injuries (Beach, 2015; Welch, 2017). Finally, knowledge of growth rates of C. auritum makes this species potentially suitable to make temporal calibrations of time since settlement. This could inform on basibiont movements or interaction with fisheries (see, e.g., Dalley and Crisp, 1981; Wegner and Cartamil, 2012; Zettler, 2021), although this application has not been used yet in cetaceans.

Remarks

Also recorded on inanimate substrata (e.g., ship hulls, moorings, ropes; Foster and Willan, 1979; Rasmussen, 1980; Farrapeira et al., 2007) and elephant seals, Mirounga spp. (Best, 1971; Joseph et al., 1986).

References

Bennet, 1837; Bennett, 1840; Hallas, 1868; Beneden, 1870; Dall, 1872; Davis, 1874; Sars, 1880; Ohlin, 1893; Lillie, 1910; Gruvel, 1911; Mörch, 1911; Collet, 1912; Liouville, 1913; Hamilton, 1914; Allen, 1916; Borradaile, 1916; Pilsbry, 1916; Broch, 1924; Cornwall, 1924; Hinton, 1925; Nansen, 1925; Cornwall, 1927; Cornwall, 1928; Mackintosh and Wheeler, 1929; Nilsson-Cantell, 1930a; Nilsson-Cantell, 1930c; Matthews, 1937; Matthews, 1938c; Gauthier, 1938; Hiro, 1938; Monod, 1938; Stephensen, 1938; Nilsson-Cantell, 1939; Scheffer, 1939; Fabian, 1950; Mizue, 1950; Omura, 1950a; Omura, et al., 1955; Angot, 1951; Ohno and Fujino, 1952; Kakuwa et al., 1953; Rees, 1953; Chapman and Santler, 1955; Clarke, 1956; Sergeant and Fisher, 1957; Tomilin, 1957; Nasu, 1958; Symons and Weston, 1958; Cockrill, 1960; Wolff, 1960; Sergeant, 1962; Slijper, 1962; Marlow, 1963; Rice, 1963; Spaul, 1964; Clarke, 1966; Morris and Mowbray, 1966; Perrin, 1969; Pilleri, 1969b; Newman and Ross, 1971; Van Bree, 1971; Monod and Serene, 1976; Fordyce et al., 1979; Dixon, 1980; Baker, 1983; Christensen, 1985; Raga and Sanpera, 1986; Mead, 1989; Bushuev, 1990; Pastene et al., 1990; Bordino and González, 1992; Debrot, 1992; García-Godos, 1992; Raga and Balbuena, 1993; Mignucci-Giannoni et al., 1998; Rodríguez-López and Mignucci-Giannoni, 1999; Huang et al., 2000; Soto, 2001; O’Connor and Franco, 2003; Holthuis and Fransen, 2004; Bermúdez-Villapol et al., 2006; Van Waerebeek et al., 2008; Holmes and Franco, 2010; Ávila et al., 2011; Martín et al., 2011; Ólafsdóttir and Shinn, 2013; Angeletti et al., 2014; Insacco et al., 2014; Beach, 2015; Elorriaga-Verplancken et al., 2015; Bachara and Gullan, 2016; Foskolos et al., 2017; Iwasa-Arai et al., 2017b; Wheeler and McIntosh, 2018; Kim et al., 2020; Natural History Museum, 2020; Tomioka et al., 2020; Ueda, 2020; Ten et al., unpubl.

Conchoderma virgatum (Spengler, 1789)

Synonyms

Conchoderma virgata (Spengler, 1790), Lepas virgata Spengler, 1790

Morphological Description

Darwin, 1854; Nilsson-Cantell, 1928

Molecular Sequences

COI (Chen et al., 2013), H3 (Pérez-Losada et al., 2008), 12S rRNA (Endo et al., 2010), 18S rRNA (Pérez-Losada et al., 2008; Yusa et al., 2012), 28S rRNA (Pérez-Losada et al., 2008)

Association

Facultative commensal

Cetacean Hosts/Basibionts

Balaenoptera acutorostrata, B. bonaerensis, B. borealis, B. musculus, B. physalus, Delphinus delphis, Feresa attenuata, Megaptera novaeangliae, Neophocaena phocaenoides, Physeter macrocephalus, Stenella coeruleoalba

Geographic Range

Cosmopolitan

Life Cycle

Most growth rate estimates of this species have been studied on inanimate substrata (0.1-1.5 mm/day; Darwin, 1851; Annandale, 1909; MacIntyre, 1966; Tsikhon-Lukanina et al., 1977; Il'in et al., 1978; Dalley and Crisp, 1981). For instance, at a mean temperature of 23°C and 14 days after metamorphosis, individuals grew 0.66 mm/day on an experimental torpedo (Dalley and Crisp, 1981). Eckert and Eckert (1987) provide a von Bertalanffy’s growth equation obtained from C. virgatum measurements on nesting sea turtles, which shows an asymptotic trend comparable to that of previous studies. Differences in growth rate estimates and maximum size between studies suggest an effect of the ecological conditions (Eckert and Eckert, 1987).

Microhabitat

Mostly as a hyperepibiont of Pennella balaenoptera (Sars, 1866; Koren and Danielssen, 1877; Turner, 1905; Nilsson-Cantell, 1930a; Clarke, 1956; Clarke, 1966; Raga and Sanpera, 1986; Araki et al., 1997; Terasawa et al., 1997; Uchida, 1998; Ólafsdóttir and Shinn, 2013), but it can also attach directly to odontocete teeth (Lillie, 1910; Aznar et al., 1994). Once reported on C. auritum (Clarke, 1966), Neocyamus physeteris (Oliver and Trilles, 2000), and on the shell of Xenobalanus globicipitis (Ten et al., unpubl.).

Use as Indicator

Knowledge of growth rates of C. virgatum makes this species potentially suitable to make temporal calibrations of time since settlement (see C. auritum). Indeed, unusual attachment of C. virgatum and Lepas spp. on dolphin teeth may have occurred after dolphin death, when teeth remain exposed (Aznar et al., 1994). This provides the opportunity to infer the approximate time of death, as it has been done in sea turtles (Ten et al., 2019). The finding of Conchoderma sp. (presumably C. virgatum) attached to a marlin spear that was inserted into the jaw of an Antarctic minke whale suggested that spearing occurred a few months before the finding (Ohsumi, 1973). Lastly, its presence and size has been used as an indicator of oceanic habitat use by sea turtles (Casale et al., 2004; Casale et al., 2012; Ten et al., 2019) and of interaction with pelagic fisheries (Wegner and Cartamil, 2012; Ten et al., 2019).

Remarks

It is typical settler of inanimate substrata, e.g., ship vessels, buoys (Foster and Willan, 1979; Farrapeira et al., 2007; González et al., 2012; Wegner and Cartamil, 2012), but also attaches to multiple marine animals, including fish (e.g., Crozier, 1916; Hastings, 1972; Ohsumi, 1973), sea turtles (e.g., Eckert and Eckert, 1987; Alonso et al., 2010), elephant seals (Joseph et al., 1986), sea snakes (Annandale, 1909; Yamato et al., 1996), and pelagic crabs (Jerde, 1967; Moazzam and Rizvi, 1979). It has also been reported as a hyperepibiont of fish copepods (e.g., Williams, 1978; Williams and Williams, 1986).

References

Sars, 1866; Koren and Danielssen, 1877; Turner, 1905; Lillie, 1910; Collet, 1912; Liouville, 1913; Mackintosh and Wheeler, 1929; Nilsson-Cantell, 1930a; Clarke, 1956; Clarke, 1966; Kawamura, 1969; Berzin, 1972; Rice, 1977; Greenwood et al., 1979; Raga and Carbonell, 1985; Raga and Sanpera, 1986; Bushuev, 1990; Aguilar and Raga, 1993; Aznar et al., 1994, unpubl.; Araki et al., 1997; Terasawa et al., 1997; Uchida, 1998; Huang et al., 2000; Kuramochi et al., 2000; Oliver and Trilles, 2000; Uchida and Araki, 2000; Ólafsdóttir and Shinn, 2013; Ten et al., unpubl.

Lepas (Anatifa) hillii (Leach, 1818)

Synonyms

Lepas hillii (Leach, 1818)

Morphological Description

Darwin, 1854; Cornwall, 1955

Molecular Sequences

-

Association

Facultative commensal

Cetacean Hosts/Basibionts

Once reported on Stenella coeruleoalba

Geographic Range

Pantropical (González et al., 2012)

Life Cycle

At temperatures ca. 25 °C, individuals attached to a ship in central Atlantic Ocean reached maturity after 30-43 days for a capitulum 13-17 mm long (i.e., a growth rate of 0.5 mm/day; Evans, 1958). Similarly as in Conchoderma spp. (see above), growth was asymptotic and fell to 0.03 mm/day after maturity (Evans, 1958).

Microhabitat

Teeth (Aznar et al., 1994)

Use as Indicator

Deeper knowledge of growth rates of L. hillii would refine estimates of time since settlement (see C. virgatum). Some applications include the estimation of the time of death of basibionts (Aznar et al., 1994; Ten et al., 2019), interaction with fisheries (Wegner and Cartamil, 2012; Ten et al., 2019), and oceanic habitat use (Casale et al., 2004; Casale et al., 2012; Ten et al., 2019).

Remarks

On inanimate substrata, e.g., buoys, ship hulls, a rope (Il'in et al., 1978; Dalley and Crisp, 1981; Farrapeira et al., 2007; Wegner and Cartamil, 2012) and on marine vertebrates, including fish (Dulčić et al., 2015), sea turtles (Domènech et al., 2015; Ten et al., 2019), and elephant seals (Joseph et al., 1986).

References

Aznar et al., 1994

Lepas (Anatifa) pectinata (Spengler, 1793)

Synonyms

Lepas pectinata Spengler, 1793

Morphological Description

Darwin, 1854; Cornwall, 1955

Molecular Sequences

COI (Chen et al., 2013; Schiffer and Herbig, 2016; Aguilar et al., 2018; Rech et al., 2018; GenBank KY639421-KY639424; MF974366-MF974369), H3 (Pérez-Losada et al., 2008), 18S rRNA (Pérez-Losada et al., 2008; Schiffer and Herbig, 2016), 28S rRNA (Pérez-Losada et al., 2008)

Association

Facultative commensal

Cetacean Hosts/Basibionts

Stenella coeruleoalba

Geographic Range

Cosmopolitan (González et al., 2012)

Life Cycle

This is the most abundant lepadid in the Northeast Atlantic, where its development has been studied (Ellis et al., 1983; Conway et al., 1990). Interestingly, L. pectinata presumably performs ontogenetic depth migrations, i.e., nauplii feed in the upper 150 m and the non-feeding cyprids distribute at 300-400 m (Conway et al., 1990). Nauplii show similar feeding and swimming features as other barnacle larvae (Moyse, 1984).

Microhabitat

Teeth (Aznar et al., 1994)

Use as Indicator

See L. hillii (above).

Remarks

Closely associated to Sargassum spp. weed (Fine, 1970; Conway et al., 1990); also found on inanimate substrata (e.g., floating crude oil, plastic debris; Horn et al., 1970; Minchin, 1996; Bergami et al., 2021) and on sea turtles (Domènech et al., 2015; Ten et al., 2019).

References

Aguilar and Raga, 1993; Aznar et al., 1994

Phylum Chordata Haeckel, 1874

Class Actinopteri Cope, 1871

Subclass Teleostei Müller, 1846

Order Carangiformes Jordan, 1963

Family Echeneidae Rafinesque, 1810

Remoras or diskfishes include 8 species of specialized teleosts that use their dorsal fin as an adhesive disc to attach to a great variety of marine vertebrates from which they benefit through, e.g., ventilation, protection from predators, and increased contact with conspecifics (Fertl and Landry, 1999a; Fertl and Landry, 1999b). The fact that remoras live in association with elasmobranchs, teleosts, sea turtles, and cetaceans (Cressey and Lachner, 1970) has hampered research on basic biological features such as growth and reproduction for most species (Battaglia et al., 2016).

Echeneis naucrates (Linnaeus, 1758)

Synonyms

Echeneis chiromacer Duméril, 1858, E. fasciata Gronow, 1854, E. fusca Gronow, 1854, E. guaican Poey, 1860, E. lunata Bancroft, 1831, E. metallica Poey, 1860, E. naucratus Linnaeus, 1758, E. neucrates Linnaeus, 1758, E. scaphecrates Duméril, 1858, E. vittate Rüppell, 1838, Echensis naucrates Linnaeus, 1758, Echneis naucrates Linnaeus, 1758, Leptecheneis flaviventris Seale, 1906, L. naucrates (Linnaeus, 1758)

Morphological Description

Collette, 2003; Skaramuca et al., 2009

Molecular Sequences

> 40,000 results in GenBank

Association

Facultative commensal

Cetacean Hosts/Basibionts

Sotalia guianensis, Tursiops truncatus

Geographic Range

Cosmopolitan (Collette et al., 2015)

Life Cycle

In the eastern Gulf of Mexico females show slower growth but achieve larger size than males; spawning takes place in August (Bachman et al., 2018).

Microhabitat

Flanks and both dorsal and ventral sides

Use as Indicator

-

Remarks

It can free swim in the water column while feeding on small fishes and plankton (O’Toole, 2002), but also attach to a broad spectrum of basibionts, including reef teleosts, sharks, and sea turtles (O’Toole, 2002; Sazima and Grossman, 2006; Gray et al., 2009), nearshore dolphins (above), and even to conspecifics (Brunnschweiler and Sazima, 2006). It is considered a sister-species of E. neucratoides (O’Toole, 2002).

References

Fertl and Landry, 1999b; Fertl et al., 2002; Noke, 2004; Santos and Sazima, 2005

Echeneis neucratoides (Zuiew, 1789)

Synonyms

-

Morphological Description

-

Molecular Sequences

COI (GenBank KF461171), EGR1, EGR2B, EGR3 (Campbell et al., 2013), ITS1 (Gray et al., 2009), ND2 (Gray et al., 2009), RAG1, RH1 (Campbell et al., 2013), VCPIP, ZIC1 (Betancur et al., 2013), 5.8S rRNA, 12S rRNA, 16S rRNA, 18S rRNA (Gray et al., 2009)

Association

Presumably facultative commensal

Cetacean Hosts/Basibionts

Two unidentified cetaceans

Geographic Range

Western Atlantic Ocean (Fertl and Landry, 1999a; Fertl and Landry, 1999b)

Life Cycle

-

Microhabitat

-

Use as Indicator

-

Remarks

Typical commensal of sharks and once observed on a West Indian manatee captured in Puerto Rico (Mignucci-Giannoni et al., 1999).

References

O’Toole, 2002

Remora australis (Bennett, 1840)

Synonyms

Echeneis australis Bennett, 1840, E. scutata Günther, 1860, Remilegia australis (Bennett, 1840), Remora australia (Bennett, 1840), R. scutata (Günther, 1860)

Morphological Description

Rice and Caldwell, 1961

Molecular Sequences

COI (GenBank GU440495; OK030822), CYTB (Sanciangco et al., 2016), ITS1, ND2 (Gray et al., 2009), RAG1 (GenBank EU167871), 5.8S rRNA, 12S rRNA, 16S rRNA, 18S rRNA (Gray et al., 2009)

Association

Obligate commensal/mutualist. Although previously considered as an obligate commensal (Rice and Caldwell, 1961), later evidence has shown that this species can feed on host’s ectoparasites (O’Toole, 2002). However, remoras may potentially disrupt the flow over cetaceans’ body, increasing drag, and their sucking disk may produce irritation (Fish et al., 2006).

Cetacean Hosts/Basibionts

Balaenoptera borealis, B. edeni, B. musculus, Delphinus delphis, Orcinus orca, Physeter macrocephalus, Stenella attenuata, S. frontalis, S. longirostris, Tursiops truncatus

Geographic Range

eastern Pacific, Atlantic, Indian Ocean, Indonesian Sea

Life Cycle

Off Brazil, remoras of the smallest size class (i.e., < 10 cm) were the most abundant size class in May and their frequency fell until none were reported in October (Wingert et al., 2021).

Microhabitat

Ubiquitous on skin (Wingert et al., 2021)

Use as Indicator

Remoras on blue whales preferentially attach to regions with reduced drag. Therefore, they could evince patterns of water flow over swimming whales, which could optimize tag deployment for extended ecological monitoring (Flammang et al., 2020).

Remarks

The records from B. edeni, O. orca, S. attenuata, and T. truncatus above provide only identification to genus level, but are here assigned to R. australis since it is the only species of Remora associated to cetaceans (O’Toole, 2002). Individuals of R. australis appear to disengage from whales during whaling (Pike, 1951; Rice and Caldwell, 1961), which might result in gross underestimations of actual prevalence in nature. Prior to towing, the prevalence of R. australis on blue whales, Balaenoptera musculus, captured in California and Peru was close to 100 percent (Rice and Caldwell, 1961). Attachment marks of this species on the host’s epidermis are superficial, and scarring is not typically observed (Rice and Caldwell, 1961; Visser, pers. obs.). There is a single record of two copepod hyperparasites on R. australis, namely Pennella balaenoptera and Lepeophtheirus crassus (Radford and Klawe, 1965).

References

Carl and Wilby, 1945; Cadenat, 1953; Krefft, 1953; Follet and Dempster, 1960; Mahnken and Gilmore, 1960; Rice and Caldwell, 1961; Rice, 1963; Radford and Klawe, 1965; Rice, 1977; Rice, 1978; Notarbartolo di Sciara and Watkins, 1979; Fertl and Landry, 1999a; Fertl and Landry, 1999b; Wingert et al., 2021

Order Siluriformes -

Family Trichomycteridae Bleeker, 1858

Catfishes (Siluriformes) are widely distributed in freshwater, estuarine, and marine habitats of continental shelves (de Pinna, 1998). Members of the family Trichomycteridae, known as pencil or parasitic catfishes (de Pinna and Wosiacki, 2003), inhabit continental freshwaters from Costa Rica to Patagonia (de Pinna and Wosiacki, 2003; Eschmeyer et al., 2017).

Ochmacanthus sp.

Synonyms

-

Morphological Description

Araújo-Wang et al., 2019

Molecular Sequences

COI, CYTB, H3, ND4, MYH6, RAG1, RAG2, 12S rRNA, and 16S rRNA of three Ochmacanthus spp. (see GenBank)

Association

Presumably obligate commensal

Cetacean Hosts/Basibionts

Inia geoffrensis (Blainville, 1817)

Geographic Range

South American rivers (Koch, 2002)

Life Cycle

-

Microhabitat

On lateral and ventral surfaces (Araújo-Wang et al., 2019)

Use as Indicator

-

Remarks

Candirus are generally commensal on various freshwater fishes (Adriaens et al., 2010), but Araújo-Wang et al. (2019) reported year-round observations on Inia geoffrensis.

References

Araújo-Wang et al., 2019

Class Hyperoartia Müller, 1844

Order Petromyzontiformes Berg, 1940

Family Petromyzontidae Bonaparte, 1831

Anadromous lampreys (Petromyzontiformes) are jawless fishes distributed antitropically around the world. They develop in estuaries and oceans, where they parasitize large vertebrates consuming their blood, fluids, and flesh, and then migrate into freshwater streams to spawn and die (Renaud, 2011; Johnson et al., 2015; Clemens et al., 2019). Species of Petromyzontidae are exclusively found in the Northern Hemisphere (Renaud, 2019; Miller et al., 2021). The family Petromyzontidae is described in Renaud (2019).

Entosphenus tridentatus (Richardson, 1836)

Synonyms

Entosphenus epihexodon Gill, 1862, E. tridentatus tridentatus (Richardson, 1836), Lampetra tridentatus (Richardson, 1836), Petromyzon astori Girard, 1858, P. ciliatus Ayres, 1855, P. epihexodon (Gill, 1862), P. lividus Girard, 1858, P. tridentatus Richardson, 1836

Morphological Description

Creaser and Hubbs, 1922

Molecular Sequences

COI (Yamazaki et al., 2006; April et al., 2011; Carim et al., 2017; GenBank GU440367; KF918874; KF918875; KF929845; KY570333), CR (GenBank AY205567), CYTB (Docker et al., 1999; Lorion et al., 2000; Yamazaki et al., 2006; Boguski et al., 2012; GenBank DW022992; GQ206157; KR422618; KR422619; KU672473-KU672485), ETR-1, ETR-2, ETR-3, ETR-4, ETR-5, ETR-6 (Spice et al., 2011), GnRH-III (Silver et al., 2004), ND1, ND2, ND4, ND5 (Docker et al., 2007), RT (GenBank AJ244558), 12S rRNA (GenBank LC091545; LC091546), 16S rRNA (GenBank KJ010762), and the whole genome (Hess et al., 2020)

Association

Ectoparasite

Cetacean Hosts/Basibionts

Balaenoptera borealis, B. musculus, B. physalus, Berardius bairdii, Megaptera novaeangliae, Physeter macrocephalus

Geographic Range

North Pacific, from Baja California north to the Bering and Chukchi seas and westward into Russia and Japan, showing the greatest latitudinal range of any lamprey (Renaud, 2011)

Life Cycle

Laboratory observations hypothesized that the time of residence in the ocean is ≤ 3.5 years (Beamish, 1980). Movements in the ocean are poorly understood, but they are typically caught between the surface and 500 m (see Clemens et al., 2019).

Microhabitat

-

Use as Indicator

Based on the degree of healing of the marks of Pacific lampreys on several species of whales, Pike (1951) inferred that lamprey attacks took place during the northward migration in the North Pacific. Therefore, marks could be used to trace whale’s migration.

Remarks

Typically parasitizes fish (Clemens et al., 2019).

References

Carl, 1950; Pike, 1951; Nemoto, 1955; Rice, 1963; Rice, 1977; Rice, 1978

Petromyzon marinus (Linnaeus, 1758)

Synonyms

Ammocoetes bicolor Lesueur, 1818, Batymyzon bairdii (Gill, 1883), Lampetra marina (Linnaeus, 1758), Oceanomyzon wilsoni Fowler, 1908, Petromyzon adriaticus Nardo, 1847, P. americanus Lesueur, 1818, P. bairdii Gill, 1883, P. concolor Wright, 1892, P. lampetra Pallas, 1814, P. maculosus Gronow, 1854, P. marinus dorsatus Wilder, 1883, P. marinus unicolor Gage, 1928, P. maximus Cuvier, 1816, P. nigricans Lesueur, 1818, P. ruber Lacepède, 1800

Morphological Description

Creaser and Hubbs, 1922

Molecular Sequences

> 193,000 results in GenBank

Association

Ectoparasite, inferred from resulting wounds and scars (Silva et al., 2014)

Cetacean Hosts/Basibionts

Balaenoptera acutorostrata, B. borealis, B. physalus, Eubalaena glacialis, Grampus griseus, Megaptera novaeangliae, Mesoplodon bidens, Orcinus orca, Physeter macrocephalus, Tursiops truncatus, Ziphius cavirostris

Geographic Range

Atlantic coast of North America and Europe, including the central Mediterranean Sea (Holčík et al., 2004; Kottelat and Freyhof, 2007)

Life Cycle

This hematophagous species grows to adult size in 1 year; the complete metamorphosis and reproduction takes 1.5 years (Silva et al., 2013).

Microhabitat

Flanks of middle and posterior body areas (Bertulli et al., 2012; Ólafsdóttir and Shinn, 2013)

Use as Indicator

In some cases, the individuals are still attached to the host when found, being easier to detect (Nichols and Hamilton, 2004; Nichols and Tscherter, 2011; Samarra et al., 2012; Miočić-Stošić et al., 2020). In others, however, only the remaining marks are visible. The applicability of these marks is still to be determined. Samarra et al. (2012) stated that they apparently disappear within 1 year, whereas Miočić-Stošić et al. (2020) claim that they are seemingly short-lived, thus not being suitable markings in photo-identification. In the past years, it has been more commonly found in Icelandic waters, and this change in distribution seems to be due to a gradual increase in water temperatures around Iceland (Astthorsson and Palsson, 2006).

Remarks

This species is often found on freshwater and marine fishes (Collette and Klein-MacPhee, 2002).

References

Japha, 1910; Collet, 1912; Nichols and Hamilton, 2004; Nichols and Tscherter, 2011; Rosso et al., 2011; Bertulli et al., 2012; Samarra et al., 2012; Ólafsdóttir and Shinn, 2013; Silva et al., 2014; Bertulli et al., 2016; Miočić-Stošić et al., 2020

Phylum Cnidaria Hatschek, 1888

Class Hydrozoa Owen, 1843

Subclass Hydroidolina Collins, 2000

Order Leptothecata Cornelius, 1992

Family Campanulariidae Johnston, 1836

Members of this family of thecate hydroids are ubiquitous in marine benthic communities. Given that the morphology of colonies and polips are highly variable within species, it is difficult to find diagnostic morphological characters to separate congeneric species (Cunha et al., 2015), which may hinder correct identification to species level.

Obelia dichotoma (Linnaeus, 1758)

Synonyms

Multiple; see Schuchert (2021).

Morphological Description

Orejas et al., 2012

Molecular Sequences

COI (Govindarajan et al., 2006; Cunha et al., 2015; Cunha et al., 2017; GenBank MG791815; MW277711; MW277730; MZ580517; MZ580890), calmodulin (Govindarajan et al., 2006), LSU rRNA (Pruski and Miglietta, 2019; Penney and Rawlings, 2021; GenBank MG786561; MG786562), SSU rRNA (MG792325), 5.8S rRNA (Cunha et al., 2015), 16S rRNA (Bridge et al., 1995; Govindarajan et al., 2006; Cunha et al., 2015; Cunha et al., 2017; Rech et al., 2018), 18S rRNA, 28S rRNA (Bridge et al., 1995; Govindarajan et al., 2006; Cunha et al., 2015; Maronna et al., 2016; Cunha et al., 2017)

Association

Unknown, although a commensalist or even mutualistic association cannot be ruled out since newly released medusae of this species are bacteriophagous (Boero et al., 2007).

Cetacean Hosts/Basibionts

Once reported on Megaptera novaeangliae

Geographic Range

Nearly cosmopolitan (Orejas et al., 2012)

Life Cycle

Kubota (1999) reported the complete life cycle of O. dichotoma in Northern Japan.

Microhabitat

As a hyperepibiont on the barnacle Coronula diadema (Cornwall, 1928)

Use as Indicator

-

Remarks

It can be found on hard substrata, such as floats, pilings, rocks, and shells (Orejas et al., 2012).

References

Cornwall, 1928

Obelia sp.

Synonyms

-

Morphological Description

Cornelius (1990) provides extensive descriptions of European Obelia spp.

Molecular Sequences

> 400 results in GenBank

Association

Unknown

Cetacean Hosts/Basibionts

Once reported on Megaptera novaeangliae

Geographic Range

-

Life Cycle

See Cornelius (1990).

Microhabitat

As a hyperepibiont on Coronula spp. (Rice, 1963)

Use as Indicator

-

Remarks

-

References

Rice, 1963

Phylum Nematoda Cobb, 1932

Class Chromadorea Inglis, 1983

Subclass Chromadoria Pearse, 1942

Order Monhysterida Filipjev, 1929

Family Monhysteridae de Man, 1876

This family is composed of terrestrial, freshwater, and marine forms. Some species are free-living in the sediment (e.g., Fonseca and Decraemer, 2008), bacterivorous on plants (Alkemade et al., 1992), associated to pack ice (Blome and Riemann, 1999) or living epibiotically on crustaceans in marine, limnetic, and terrestrial habitats (Lorenzen, 1986).

Odontobius ceti (Roussel de Vauzème, 1834)

Synonyms

-

Morphological Description

Roussel de Vauzème, 1834; Baylis, 1923; Lorenzen, 1986

Molecular Sequences

-

Association

Obligate commensal; it probably feeds primarily on organic particles from whales’ diet (Baylis, 1923).

Cetacean Hosts/Basibionts

Balaenoptera borealis, B. musculus, B. physalus, Eubalaena australis, Megaptera novaeangliae

Geographic Range

Atlantic, North Pacific, Antarctica

Life Cycle

Eggs are laid on the baleen plates but, since no larval stages have been found on cetaceans, further development may take place in the sea (Baylis, 1923).

Microhabitat

Baleen plates (Roussel de Vauzème, 1834; Baylis, 1923; Skrjabin, 1959; Rice, 1963; Lorenzen, 1986), in association with the ciliated protozoon Haematophagus megaptere Woodcock & Lodge, 1921 (Baylis, 1923).

Use as Indicator

-

Remarks

Considered a taxon inquirendum (WoRMS, 2021).

References

Roussel de Vauzème, 1834; Baylis, 1923; Skrjabin, 1959; Rice, 1963; Lorenzen, 1986

Other Taxa With Indicator Value

Some organisms have been reported on cetaceans but cannot be considered epibiotic animals (i.e., they belong to another kingdom or are not intimately associated to cetaceans). For instance, the cirolanid isopods Natatolana spp. or the hagfish Myxine glutinosaLinnaeus, 1758 are scavengers (Hale, 1926; Bowman, 1971; Pinedo et al., 1989; Martini, 1998; Keable, 2006; Zintzen et al., 2011) and records on living cetaceans are unusual (Pace et al., 2016). The following taxa, despite not being intimate associates or not belonging to the animal kingdom, can provide valuable information on cetacean biology.

At least 14 genera of diatoms (Chromista: Bacillariophyceae) have been recorded on over a dozen cetacean species (e.g., Hart, 1935; Matthews, 1938b; Hustedt, 1952; Nemoto, 1958; Nemoto et al., 1977; Heckman et al., 1987; Ferrario et al., 2018). Several species belonging to genera such as Bennettella Holmes, 1985, Epipellis Holmes, 1985, Epiphalaina Holmes, Nagasawa & Takano, 1993, Plumosigma Nemoto, 1956, and Tursiocola Holmes, Nagasawa & Takano, 1993 are believed to be exclusive to cetaceans. It has been proposed that these animal-specific diatoms settle on cetaceans in polar waters and take approximately one month to develop into a yellowish-brown film visible to the naked eye (Omura, 1950b). Therefore, it can be inferred that whales in polar areas that are covered by diatom films are at least one-month visitors, whereas those at lower latitudes and still showing skin colouration returned recently from polar regions (Hart, 1935; Matthews, 1938b; Omura, 1950b; Cockrill, 1960; Bannister, 1968; Sekiguchi et al., 1993). In South Africa, diatom films were detected more frequently as the Antarctic whaling season advanced (Cockrill, 1960) vs. at the beginning of the season (Best, 1969b). Diatom films have also been used to investigate population segregation, i.e., they were almost absent on sperm whale females and young males, which coincides with inferences of social segregation based in cyamid infections (see C. catodontis and N. physeteris; Best, 1969a; Best, 1969b).

The cookie-cutter shark Isistius brasiliensis (Quoy & Gaimard, 1824) preys on multiple marine organisms, including finfish (Papastamatiou et al., 2010), elasmobranchs (Yamaguchi and Nakaya, 1997), pinnipeds (Gallo-Reynoso and Figueroa-Carranza, 1992; Hiruki et al., 1993), sirenians (Reddacliff, 1988), and cetaceans (Dwyer and Visser, 2011). About 25% of stomach content consists of marine mammal remains, i.e., tissue plugs, skin, blubber (Carlisle et al., 2021), thus being considered a cetacean (micro)predator (Barros and Stolen, 2001). It has been hypothesized that cookie-cutter sharks use an ambush style of hunting; when potential preys are close enough, they latch and remove large plugs of tissue (Widder, 1998). This feeding mode has been catalogued as ectoparasitic (Carlisle et al., 2021). Despite its widespread distribution (Dwyer and Visser, 2011), its common range lies within equatorial and tropical waters (Nakano and Tabuchi, 1990; Yamaguchi and Nakaya, 1997). Accordingly, marks of I. brasiliensis on cetaceans at higher latitudes have been used as a migration tag (Tomilin, 1957 -who refers to them as ‘light spots’; Renner and Bell 2009; Foote et al., 2011; Bertulli et al., 2016). Interestingly, this species has not been reported on the southern right whale, Eubalaena australis (Matthews, 1938a), which is found only further south than 13°S (Peters and Barendse, 2016). Also, due to the long duration of the marks it leaves on cetaceans, it has been suggested as a tool for individual recognition and marking (Dorsey et al., 1990; Visser, 1999; Gill et al., 2000; McSweeney et al., 2007; Visser et al., 2010; Rosso et al., 2011; Bertulli et al., 2016; Visser et al., 2020; Franklin et al., 2020). Other applications of this biological tag include distinguishing cetacean age classes (McSweeney et al., 2007), populations (Sherchenko, 1970; Best, 1977; Moore et al., 2003), and orca ecotypes (Dwyer and Visser, 2011; Visser et al., 2020); characterizing whale wintering grounds (Bushuev, 1990); and as an indicator of swimming in deep waters (Baird et al., 2006) and of emaciation (Gasparini and Sazima, 1996). Its congeneric member, the largetooth cookiecutter shark, Isistius plutodus Garrick & Springer, 1964, once observed on a Cuvier’s beaked whale, Ziphius cavirostris (Pérez-Zayas et al., 2002), has a poorly known distribution (Moore et al., 2003). It leaves larger flesh “plugs” different from the wounds produced by I. brasiliensis (Compagno, 1984). Scars of Isistius spp. can harbor high loads of cyamids (Kobayashi et al., 2021).

As a final anecdotal remark, Ohsumi (1973) found the broken spear of a marlin, Makaira sp., stuck in the jaw of an Antarctic minke whale, Balaenoptera bonaerensis, which this author used to infer migration of this whale from tropical and sub-tropical waters, where marlins are distributed.

Discussion

Gaps and Biases

The present review includes records covering over three and a half centuries, a fact that attests to the curiosity that cetacean epibionts have sparked among naturalists, probably due to their often bizarre appearance and conspicuousness. As a result, a reasonable account of the associations between cetaceans and their metazoan epibionts has been achieved. However, important biases and gaps still remain. First of all, the vast majority of studies has not primarily focused on epibiosis and thus provides little quantitative information on these associations. For instance, less than a quarter (110 out of 493) of the publications in this review include data on prevalence. This ‘quantitative gap’ problem is worsened by the selective ‘picking’ of positive records, i.e., there is a tendency to report on the occurrence, but not on the absence, of epibionts in descriptive surveys on cetaceans. Consequently, it can be difficult to draw accurate pictures of the degree of specificity and, especially, geographic distribution of epizoic taxa. Another source of bias concerns epibiont size. Studies on large, visible barnacles such as Xenobalanus globicipitis are far more numerous than those focusing on minute creatures such as Balaenophilus unisetus (Badillo et al., 2007) or species of Cyamidae infecting dolphins (Fraija-Fernández et al., 2017). The genetic information available also varies among epibiotic taxa: 28 out of 54 species lack sequenced genetic material. Among these, some are poorly known species, but others have a long study history and numerous records (e.g., Odontobius ceti vs. Coronula reginae).

There is also an uneven coverage and research effort on cetaceans as basibionts, which can result in somewhat biased impressions on epibiont diversity among cetaceans. For instance, baleen whales as a group exhibit the greatest epibiont diversity most likely because they are large, slow-swimming hosts with a number of skin folds and callosities that provide suitable microhabitats for epibiont settlement (Berzin and Vlasova, 1982; see Fraija-Fernández et al., 2017). Moreover, the occurrence of certain epibionts on whales (e.g., coronulids) promotes the settlement and/or population growth of others (e.g., lepadids, cyamids), acting as pioneers (e.g., Matthews, 1937; Rice, 1963). However, mysticetes also are a well-studied cetacean group and, not surprinsingly, only the pygmy right whale, Caperea marginata (Gray, 1846), and Omura’s whale, Balaenoptera omuraiWada et al., 2003, described in 2003 (Wada et al., 2003), still lack records of epibiotic fauna. Conversely, odontocetes may exhibit relatively poor epizoic fauna because many of them (e.g., delphinids) are fast-swimming hosts with small, smooth surfaces. Moreover, there are riverine dolphins, i.e. species of Inia, Neophocaena, Orcaella, Platanista, and Sotalia that can seldom, if at all, be exposed to epibiotic taxa of marine origin. Research effort is also low for many odontocetes, and no studies are indeed available from species of Orcaella Gray, 1866, Platanista Wagler, 1830, and Tasmacetus Oliver, 1937. The overall point is, therefore, that epibiotic richness in the less studied cetaceans likely has an unassessed degree of underestimation.

The spatial distribution of data is also heterogeneous. First, records from oceanic waters are far less common than those from coastal areas. Second, most geographic records concentrate in the Southern Ocean, Mediterranean Sea, off South Africa, and California, followed by other Northern Pacific regions (Eastern waters and Japan) and the North Sea. However, other vast areas have few surveys, or even none, including the Arctic, Black Sea, Red Sea, Indian Ocean (except South African waters), and the Southwestern Pacific and adjacent seas (e.g., Sulu-Celebes Sea). In this context, it is worth noting that the higher number of records in particular regions does not necessarily result from higher epizoite diversity or abundance, but rather from higher sampling effort. Whaling was a fundamental source of data but focused mainly on areas and seasons where the target species occurred at higher densities, e.g., Antarctic whaling during the austral summer or Saldanha and Durban whaling stations in South Africa (see Findlay and Best, 2016; IWC, 2021). Also, the Mediterranean and U.S. stranding networks have been working for several decades (Becker et al., 1994), while other areas have recently started to gather data on cetaceans (e.g., the Western Indian Ocean region; Plön et al., 2020) or lack active stranding or research programs (i.e., eastern Russian Arctic).

Finally, we still know very little about biology of the epibiotic fauna of cetaceans; a problem which results, at least in part, from the difficulties of dealing with organisms that depend on marine hosts whose accessibility is often limited due to economical, logistic, and legal constraints for sampling. We call this the ‘association gap’; we often do not know basic aspects of many epibiont taxa, such as the complete life cycle or the actual nature of the interactions (commensal, parasitic or mutualistic).

The Nature of Epibiotic Associations and Their Indicator Potential

The origin of epibiotic associations of some animal groups with cetaceans is an exciting evolutionary issue since this epibiont fauna was acquired after the ancestors of these mammals colonized the sea (Aznar et al., 2001). Thus, there are instances of a simple use of cetaceans as additional substrata for facultative epibionts such as the Lepadidae (Newman and Abbott, 1980); host-switching events from prior obligate associations with other marine vertebrates, resulting in co-speciation, e.g., the Coronulidae (Frick et al., 2011; Hayashi et al., 2013; Buckeridge et al., 2019) and, perhaps, B. unisetus (Badillo et al., 2007); or putative colonization without speciation, e.g., in the case of Pennella balaenoptera (Fraija-Fernández et al., 2018). As far as we are aware, the Cyamidae could represent the only case of a potential primary adaptation to parasitism on cetaceans from a putative marine free-living ancestor (see Lowry and Myers, 2013). The nature of each type association brought about a variable degree of modifications in morphology, dependency of host/basibiont, and life history traits yet to be investigated in detail (see, e.g., Pugliese et al., 2012; Dreyer et al., 2020, for the case of X. globicipitis). These features define the potential of each epibiont as a tool to uncover aspects of cetaceans’ biology. In what follows, we condense the key biological data shown above for the main epibiotic groups, i.e., amphipods, cirripeds, and copepods; we also summarize their use as indicators. Other members of the epibiotic fauna of cetaceans are certainly interesting from ecological and evolutionary points of view, e.g., the roundworm Odontobius ceti or the whalesucker Remora australis. However, their usefulness as indicators are, in principle, more limited, and will not be further discussed here.

The level of host specificity varies greatly among whale lice species; some species have been reported only, or preferentially, on single cetacean species (e.g., Cyamus boopis, C. catodontis, C. ceti, C. eschrichtii, Neocyamus physeteris) or clades (e.g., Balaenocyamus balaenopterae, C. erraticus, C. gracilis), whereas others appear to be more generalist (e.g., Syncyamus aequus). The combination of bodily transmission and high specificity makes cyamids especially useful to shed light on phylogeography and social interactions of cetaceans (see references above). Moreover, cyamids can outlive their host for several days, thus providing a rough proxy of the time of death of cetaceans (Leung, 1976; Lehnert et al., 2007). However, when dealing with stranded cetaceans (a common scenario nowadays), these parasites can readily dislodge from hosts, which represents a potential drawback if quantitative infection data are to be used (Fraija-Fernández et al., 2017).

All epibiotic barnacles of cetaceans are filter-feeders whose life cycle includes a series of planktotrophic naupliar stages followed by a non-feeding cyprid, which permanently attaches to the basibiont (Darwin, 1851; Anderson, 1994; Høeg et al., 2003). Coronulids typical from whales tend to be selective and preferentially settle on single host species. For instance, Coronula diadema is associated to humpback whales (ca. 70% of records of C. diadema) and occurs on nearly all whales examined in surveys (Nishiwaki, 1959; Rice, 1963). In contrast, the basal representative of coronulids colonizing cetaceans, namely, Xenobalanus globicipitis, has been found on a total of 41 odontocete and mysticete species worldwide. The actual and potential indicator value of coronulids are thus defined by the commensal mode of feeding, the strict dependence on cetacean epidermis for attachment, and the variable degree of basibiont specificity. Species of this family have been used to unveil hydrodynamic features of cetaceans (Kasuya and Rice, 1970; Fish and Battle, 1995; Carrillo et al., 2015; Moreno-Colom et al., 2020) or systemic disease (Aznar et al., 1994; Aznar et al., 2005; Flach et al., 2021). However, their utility to inform on other aspects of cetacean biology, particularly movements and stock identification, are still far from full exploitation. For instance, Bushuev (1990) found significant differences of prevalence of X. globicipitis on Antartic minke whales from different Antarctic sectors, and interpreted them as evidence that whales used different wintering areas and did not mix in the Southern Ocean. However, this interpretation relies on the untested assumption that barnacle recruitment can only occur at low latitudes.

The second group of barnacles occurring on cetaceans, i.e., members of the Lepadidae, includes generalist dwellers on any type of hard substrata available in oceanic waters (e.g., Farrapeira et al., 2007; Wegner and Cartamil, 2012). Perhaps the most interesting species in this respect is Conchoderma auritum because, as noted above, it tends to be associated to cetaceans, either directly (on teeth) or indirectly (via the shell of coronulids, or the body of the mesoparasite P. balaenoptera). This raises the interesting question over the extent to which individuals of C. auritum recognize cetaceans as preferential substrata, and whether their populations depend on these basibionts for long-term stability. In any event, lepadids are fast-growing organisms that can be amenable for observational and experimental studies to determine their growth rate at different temperatures (Evans, 1958; Rasmussen, 1980; Dalley and Crisp, 1981; Eckert and Eckert, 1987; Inatsuchi et al., 2010). This makes them suitable as indicators of drifting time of their ‘living platforms’ (Fraser et al., 2011; Magni et al., 2015; López et al., 2017; Ten et al., 2019), and other aspects yet to be explored in cetaceans.

Two copepods have also developed intimate associations with cetaceans. Balaenophilus unisetus occurs on the baleen plates of four Balaenoptera spp. and is believed to feed on baleen’s keratin (or the associated microfilm) as an obligate commensal (Vervoort and Tranter, 1961; Ogawa et al., 1997; Fernandez-Leborans, 2001; Badillo et al., 2007). Interestingly, available evidence for the congeneric species B. manatorum suggests that direct contact is necessary for transmission of Balaenophilus spp. (Domènech et al., 2017). This feature has allowed to draw striking inferences on unexpected contacts between otherwise solitary juveniles of marine turtles (Domènech et al., 2017). However, the indicator value of B. unisetus seems much more limited because accessibility to whale samples is very restricted.

Females of the world-largest known copepod, Pennella balaenoptera, act as mesoparasite of at least 24 cetacean species, penetrating the blubber and musculature to feed on blood (Schmidt and Roberts, 2009; Hogans, 2017). Recent evidence has shown that there are not clear diagnostic morphological traits to differentiate this species from its congener P. filosa except for the use of different hosts (Abaunza et al., 2001; Hogans, 2017). Moreover, molecular data do not support segregation between specimens collected from cetaceans and the swordfish in the western Mediterranean (Fraija-Fernández et al., 2018). Pennella filosa parasitizes a broad spectrum of large marine fishes in the oceanic realm (Román-Reyes et al., 2019 and references herein). Apparently, then, the occurrence of P. balaenoptera (= filosa) in oceanic cetaceans could have resulted from and co-accommodation of the parasite on further hosts sharing the same habitat. However, this conclusion should be confirmed by analyzing more specimens of P. balaenoptera collected from other fish and cetaceans in other geographical regions. This is paramount because both P. balaenoptera and P. filosa exhibit low host specificity, contrary to other members of the family Pennellidae, which infect one or two hosts (Hogans, 2017). Thus, the possibility that cryptic speciation have occurred in P. balaenoptera (= filosa) cannot be ruled out. This taxonomic issue is also relevant to assess the usefulness of P. balaenoptera as an indicator species. So far, the species has been used as an indicator of host’s health status, i.e., heavy loads of this parasite could reflect poor health of the affected cetacean (Vecchione and Aznar, 2014). However, population inferences are more dependent on whether or not fishes should be included as part of the actual host community supporting the local population of P. balaenoptera (= filosa).

Concluding Remarks

Every epibiotic organism must first contact a potential basibiont, attach, and then successfully thrive on it (Crisp and Barnes, 1954; Crisp, 1955; Mullineaux and Butman, 1991). Accordingly, its presence on a vagile animal implies prior coincidence in time and space between both organisms and the suitability of the basibiont/host as a habitat. In addition, since epibionts essentially live in the ecotone between the basibiont/host surface and the marine environment, abiotic conditions (e.g., temperature, salinity) must also fit the auto-ecological requirements of the epibionts during all their life-span, regardless of the migratory activity of the basibiont/host (see Moreno-Colom et al., 2020, and references therein). All these features are the ones that potentially allow to draw inferences on hosts’ biology and ecology at individual, population, or community levels. However, the absence of epibionts is also informative, particularly at population level. For instance, investigating marine-mammal breeding and feeding grounds, and migratory routes, is especially important for conservation (Pompa et al., 2011), and can be elucidated, not only by the presence of selected epibionts, but also by their absence. We therefore encourage cetologists to report on both the presence or absence of epibionts whenever possible. Also, quantitative data (e.g., prevalence, mean number of individuals per host) would be most welcome.

Lastly, it is not an overstatement to claim that cetacean epibionts bear intrinsic value, thus should benefit from explicit consideration in conservation policies (see Whiteman and Parker, 2005; Aznar et al., 2011; Kwak et al., 2020). This becomes highly relevant for specific taxa associated to threatened cetaceans (e.g., whale lice), which are also on the verge of unnoticed extinction (see Buckeridge, 2012).

Funding

The work of ST was partially supported by UV-INV-PREDOC19F1-1007742. This study is supported by project AICO/2021/022 granted by Conselleria d’Innovacioó, Universitats, Ciència i Societat Digital, Generalitat Valenciana, and the Biodiversity Foundation of the Ministry for the Ecological Transition and Demographic Challenge (VARACOMVAL project) (with NextGeneration EU funds).

Acknowledgments

Special gratitude is to Julio Cruz Vila for his assistance during literature search and to the Libraries and Documentation Service of the University of Valencia (UV) for provision of some papers that were not easily accessible.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Statements

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

ST carried out literature search, wrote the initial version of the manuscript, and prepared the figures. FJA participated in developing the ideas and organizing and writing the manuscript, and JAR revised the text. All authors read manuscript drafts and contributed content to the developing paper. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2022.846558/full#supplementary-material

References

  • 1

    Abaunza P. Arroyo N. L. Preciado I. (2001). A Contribution to the Knowledge on the Morphometry and the Anatomical Characters of Pennella balaenopterae (Copepoda, Ciphonostomatoida, Pennellidae), With Special Reference to the Buccal Complex. Crustaceana74 (2), 193210. doi: 10.1163/156854001750096292

  • 2

    Abollo E. López A. Gestal C. Benavente P. Pascual S. (1998). Macroparasites in Cetaceans Stranded on the Northwestern Spanish Atlantic Coast. Dis. Aquat. Org.32 (3), 227231. doi: 10.3354/dao032227

  • 3

    Achituv Y. (1998). Cirral Activity in the Whale Barnacle Cryptolepas Rhachianechi. J. Mar. Biolog. Assoc. U.K.78, 12031213. doi: 10.1017/S0025315400044428

  • 4

    Addink M. J. Smeenk C. (2001). Opportunistic Feeding Behaviour of Rough-Toothed Dolphins Steno bredanensis Off Mauritania. Zool. Verh.334, 3748.

  • 5

    Adriaens D. Baskin J. N. Coppens H. (2010). “Evolutionary Morphology of Trichomycterid Catfishes: About Hanging on and Digging in” in Origin and Phylogenetic Interrelationships of Teleosts. Eds. NelsonJ. S.SchultzeH. P.WilsonM. V. (München: Verlag Dr Friedrich Pfeil), 337362.

  • 6

    Aguilar R. Ogburn M. B. Hines A. H. (2018). Chesapeake Bay Barcode Initiative: Invertebrates Fy17 (EMBL/GenBank/DDBJ databases).

  • 7

    Aguilar A. Raga J. A. (1993). The Striped Dolphin Epizootic in the Mediterranean-Sea. AMBIO22, 524528.

  • 8

    Agusti-Ridaura C. Hamre L. A. Espedal P. G. Øines Ø. Horsberg T. E. Kaur K. (2019). First Report on Sensitivity of Caligus elongatus Towards Anti-Louse Chemicals and Identification of Mitochondrial Cytochrome C Oxidase I Genotypes. Aquaculture507, 190195. doi: 10.1016/j.aquaculture.2019.04.022

  • 9

    Ali S. N. Ayub Z. (2021). Growth and Reproduction of Megabalanus tintinnabulum (Crustacea: Cirripedia) in Coastal Waters of Pakistan, North Arabian Sea. Reg. Stud. Mar. Sci.43, 101662. doi: 10.1016/j.rsma.2021.101662

  • 10

    Alkemade R. Wielemaker A. Hemminga M. A. (1992). Stimulation of Decomposition of Spartina Anglica Leaves by the Bacterivorous Marine Nematode Diplolaimelloides bruciei (Monhysteridae). J. Exp. Mar. Bio. Ecol.159 (2), 267278. doi: 10.1016/0022-0981(92)90041-8

  • 11

    Allen G. M. (1916). The Whalebone Whales of New England. Mem. Boston Soc Nat. Hist.8 (2), 107322. doi: 10.5962/bhl.title.25585

  • 12

    Allen G. M. (1941). Pygmy Sperm Whale in the Atlantic. Field Mus. Nat. Hist. Zool. Ser.27, 1736.

  • 13

    Alonso de Pina G. M. Giuffra R. (2003). Taxonomía, Distribución Y Notas Sobre Cuatro Especies De Ectoparásitos De Cetacea (Crustacea: Amphipoda: Cyamidae). Rev. del Museo Argentino Cienc. Naturales5 (1), 3962. doi: 10.22179/REVMACN.5.29

  • 14

    Alonso L. Estrades A. Scarabino F. Calcagno J. (2010). Conchoderma Virgatum (Spengler 1970) (Cirripedia: Pedunculata) Associated With Sea Turtles in Uruguayan Shallow Coastal Waters. Pan-Am. J. Aquat. Sci.5 (1), 166168.

  • 15

    Álvarez-Fernández E. Carriol R. P. Jordá J. F. Aura J. E. Avezuela B. Badal E. et al . (2013). Occurrence of Whale Barnacles in Nerja Cave (Málaga, Southern Spain): Indirect Evidence of Whale Consumption by Humans in the Upper Magdalenian. Quat. Int.337, 163169. doi: 10.1016/j.quaint.2013.01.014

  • 16

    Alves-Motta M. R. Luz-Carvalho V. Nunes-Pinheiro D. C. S. Groch K. R. Gonçalves-Pereira L. Sánchez-Sarmiento A. M. et al . (2020). Facial Squamous Cell Carcinoma and Abdominal Peripheral Nerve Sheath Tumour With Rhabdomyoblastic Differentiation in a Rough-Toothed Dolphin (Steno bredanensis). J. Comp. Pathol.176, 122127. doi: 10.1016/j.jcpa.2020.02.013

  • 17

    Anderson D. T. (1994). Barnacles: Structure, Function, Development and Evolution (London: Chapman & Hall).

  • 18

    Aneesh P. T. Valarmathi K. Mitra S. (2019). Redescription of Nerocila Recurvispina Schiödte and Meinert 1881:(Crustacea: Isopoda) From the Hooghly River, Kolkata, India. Mar. Biodivers.49 (1), 301313. doi: 10.1007/s12526-017-0799-8

  • 19

    Angeletti S. Cervellini P. M. Massola V. (2014). Nuevo Registro De Ballena Jorobada (Megaptera novaeangliae) Para El Mar Argentino Y Notas Sobre Sus Epibiontes. Mastozoología Neotropical21 (2), 319324.

  • 20

    Angot M. (1951). Rapport Scientifique Sur Les Expeditions Baleinieres Autour De Madagascar (Saisons 1949 Et 1950). Mém. Inst. Sci. Madagascar Sér. A6 (2), 439486.

  • 21

    Annandale N. (1909). The Rate of Growth in Conchoderma and Lepas. Rec. India. Mus.3, 295.

  • 22

    Anthony R. Calvet J. (1905). Recherches Faites Sur Le Cétacé Capturé a Cètte, Le 6 Octobre 1904 – Balaenoptera Physalus (Linné). Bull. Soc Phil. 7(2), 7585.

  • 23

    April J. Mayden R. L. Hanner R. H. Bernatchez L. (2011). Genetic Calibration of Species Diversity Among North America's Freshwater Fishes. Proc. Natl. Acad. Sci. U.S.A.108 (26), 1060210607. doi: 10.1073/pnas.1016437108

  • 24

    Araki J. Kuramochi T. Machida M. Nagasawa K. Uchida A. (1997). A Note on the Parasite Fauna of the Western North Pacific Minke Whale (Balaenoptera Acutorostrata). Rep. Int. Whal. Commn.47, 565567.

  • 25

    Araújo-Wang C. Schormans E. Wang J. (2019). Ecological Interaction of a “Parasitic” Candiru Catfish and Botos (Inia Geoffrensis). Mar. Mamm. Sci.35 (4), 13471354. doi: 10.1111/mms.12593

  • 26

    Arroyo N. L. Abaunza P. Preciado I. (2002). The First Naupliar Stage of Pennella balaenopterae Koren and Danielssen 1877 (Copepoda: Siphonostomatoida, Pennellidae). Sarsia: North Atlantic Marine Sci.87 (5), 333337. doi: 10.1080/0036482021000155785

  • 27

    Arvy L. (1977). La Peau, Les Phaneres Et Leurs Parasites Chez Les Cetaces. Vie Milieu27, 137190.

  • 28

    Arvy L. (1982). Phoresis and Parasitism in Cetaceans: A Review. Invest. Cetacea.14, 233335.

  • 29

    Ashton G. V. Davidson I. C. Geller J. B. Ruiz G. M. (2016). Disentangling the Biogeography of Ship Biofouling: Barnacles in the Northeast Pacific. Glob. Ecol. Biogeogr.25 (6), 739750. doi: 10.1111/geb.12450

  • 30

    Astthorsson O. S. Palsson J. (2006). New Fish Records and Records of Rare Southern Species in Icelandic Waters in the Warm Period 1996-2005. ICES Document CM 2006/C: 20, 22 pp.

  • 31

    Aurivillius P. O. C. (1879). On a New Genus and Species of Harpacticida. Bihang K. Svenska Vet. Akad. Handl.5 (18), 116.

  • 32

    Avdeev V. V. (1989). Parasitic Amphipods of the Family Cyamidae and the Problem of Cetacea Origin. Biologija Morja4, 2733.

  • 33

    Ávila I. C. Cuellar L. M. Cantera J. R. (2011). Crustacean Ectoparasites and Epibionts of Humpback Whales, Megaptera novaeangliae (Cetacea: Balaenopteridae), in the Colombian Pacific. Res. J. Costa Rican Dist. Educ. Univ.2, 177185.

  • 34

    Azevedo A. Soares M. P. de Castro M. C. T. Lailson-Brito J. Jr. Gurgel M. I. (1996). Ocorrência De Epizoítos Em Cetáceos Na Costa do Estado do Rio De Janeiro, Brasil (Porto Alegre, Brasil: Resumos do XXI Congresso Brasileiro de Zoologia), 254.

  • 35

    Aznar F. J. Balbuena J. A. Fernández M. Raga J. A. (2001). “Living Together: The Parasites of Marine Mammals,” in Marine Mammals. Eds. EvansP. G. H.RagaJ. A. (Boston, MA: Springer), 385423. doi: 10.1007/978-1-4615-0529-7_11

  • 36

    Aznar F. J. Balbuena J. A. Raga J. A. (1994). Are Epizoites Biological Indicators of a Western Mediterranean Striped Dolphin Die-Off? Dis. Aquat. Org.18, 159163. doi: 10.3354/dao018159

  • 37

    Aznar F. J. Fernández M. Balbuena J. A. (2011). “Why We Should Care About the Parasite Fauna of Cetaceans: A Plea for Integrative Studies,” in Whales and Dolphins: Behavior, Biology and Distribution. Ed. MurrayC. A. (New York:Nova Publishers).

  • 38

    Aznar F. J. Fernández M. Raga J. A. Balbuena J. A. (2016). Long-Term Population Trend of the Epibiont Barnacle Xenobalanus globicipitis in the Western Mediterranean: Is There a Role for Viral Outbreaks in its Cetacean Hosts? [Poster]. Front. Mar. Sci.3. doi: 10.3389/conf.fmars.2016.04.00086

  • 39

    Aznar F. J. Perdiguero D. Del Olmo A. P. Repullés A. Agustí C. Raga J. A. (2005). Changes in Epizoic Crustacean Infestations During Cetacean Die-Offs: The Mass Mortality of Mediterranean Striped Dolphins Stenella Coeruleoalba Revisited. Dis. Aquat. Org.67 (3), 239247. doi: 10.3354/dao067239

  • 40

    Bachara W. Gullan A. (2016). First Stranding Record of a True’s Beaked Whale (Mesoplodon Mirus) in Mozambique, Report WB2016/1. [Unpubl. report to Cetal Fauna]

  • 41

    Bachman B. A. Kraus R. Peterson C. T. Grubbs R. D. Peters E. C. (2018). Growth and Reproduction of Echeneis Naucrates From the Eastern Gulf of Mexico. J. Fish Biol.93 (4), 755758. doi: 10.1111/jfb.13790

  • 42

    Badillo F. J. Puig L. Montero F. E. Raga J. A. Aznar F. J. (2007). Diet of Balaenophilus spp. (Copepoda: Harpacticoida): Feeding on Keratin at Sea? Mar. Biol.151 (2), 751758. doi: 10.1007/s00227-006-0521-z

  • 43

    Baird R. W. Webster D. L. McSweeney D. J. Ligon A. D. Schorr G. S. Barlow J. (2006). Diving Behaviour of Cuvier’s (Ziphius cavirostris) and Blainville’s (Mesoplodon densirostris) Beaked Whales in Hawaii. Can. J. Zool.84 (8), 11201128. doi: 10.1139/z06-095

  • 44

    Baker A. N. (1983). Whales and Dolphins of Australia and New Zealand (Wellington: Victoria University Press).

  • 45

    Balbuena J. A. (1991). Estudio Taxonómico Y Ecológico De La Parasitofauna Del Calderón Común, Globicephala melas (Traill 1809), En Las Aguas De Europa. [PhD Thesis] (Valencia, Spain: Universitat de València).

  • 46

    Balbuena J. A. Aznar F. J. Fernández M. Raga J. A. (1995). Parasites as Indicators of Social Structure and Stock Identity of Marine Mammals. Dev. Mar. Biol.4, 133139). doi: 10.1016/S0163-6995(06)80017-X

  • 47

    Balbuena J. A. Raga J. A. (1991). Ecology and Host Relationships of the Whale-Louse Isocyamus delphini (Amphipoda: Cyamidae) Parasitizing Long-Finned Pilot Whales (Globicephala melas) Off the Faroe Islands (Northeast Atlantic). Can. J. Zool.69 (1), 141145. doi: 10.1139/z91-021

  • 48

    Balbuena J. A. Raga J. A. Fernández M. Ortiz T. (1989). “Ectoparasites and Epizoits of the Long-Finned Pilot Whale Globicephala melas Off the Faroe Islands, With Special Reference to Isocyamus delphinii (Amphipoda: Cyamidae),” in European Research on Cetaceans. Eds. EvansR. G. H.SmeenkC. (La Rochelle, France: Proceedings of the third annual conference of the European Cetacean Society), 115117.

  • 49

    Bane G. W. Zullo V. A. (1980). Observations on a Stranded Goosebeaked Whale (Ziphius cavirostris, Cuvier 1823) and its Ectocommensal Barnacles (Xenobalanus globicipitis). J. Elisha Mitchell Sci. Soc96 (1), 13.

  • 50

    Bannister J. L. (1968). An Aerial Survey for Sperm Whales Off the Coast of Western Australia 1963-1965. Aust. J. Mar. Freshw. Res.19, 3151. doi: 10.1071/MF9680031

  • 51

    Bannister J. L. Grindley J. R. (1966). Notes on Balaenophilus Unisetus POC Aurivillius 1879, and its Occurrence in the Southern Hemisphere (Copepoda, Harpacticoida). Crustaceana10 (3), 296302. doi: 10.1163/156854066X00199

  • 52

    Barnard K. H. (1924). Contribution to the Crustacean Fauna of South Africa. No. 7. Cirripedia. Ann. S. Afr. Mus.20, 1103.

  • 53

    Barnard K. H. (1931). Diagnoses of New Genera and Species of Amphipod Crustacea Collected During the 'Discovery' Investigations 1925-1927. Ann. Mag. Nat. Hist. Ser.7, 425430. doi: 10.1080/00222933108673327

  • 54

    Barnard K. H. (1932). Amphipoda: Cyamidae. Discovery Rep.5, 1326. doi: 10.5962/bhl.part.27664

  • 55

    Barnard K. H. (1955). South African Parasitic Copepoda. Ann. S. Afr. Mus.41 (5), 223312.

  • 56

    Barros N. B. Stolen M. K. (2001). Biology of Offshore Bottlenose Dolphins From East Florida (Sarasota, FL: Mote Marine Laboratory).

  • 57

    Batista R. L. G. Schiavetti A. Santos U. A. D. Reis M. D. S. S. D. (2012). Cetaceans Registered on the Coast of Ilhéus (Bahia), Northeastern Brazil. Biota Neotropica12 (1), 3138. doi: 10.1590/S1676-06032012000100003

  • 58

    Battaglia P. Potoschi A. Valastro M. Andaloro F. Romeo T. (2016). Age, Growth, Biological and Ecological Aspects of Remora Osteochir (Echeneidae) in the Mediterranean Sea. J. Mar. Biolog. Assoc. U.K.96, 639645. doi: 10.1017/S0025315415000867

  • 59

    Baum C. Stelzer R. Meyer W. Fleischer L. G. and Siebers D. . (2000). A Cryo-Scanning Electron Microscopic Study of the Skin Surface of the Pilot Whale Globicephala Melas. Aquat. Mamm.26(1), 716.

  • 60

    Baum C. Meyer W. Roessner D. Siebers D. Fleischer L. (2001). A Zymogel Enhances the Self-Cleaning Abilities of the Skin of the Pilot Whale (Globicephala melas). Comp. Biochem. Physiol. Mol. Integr. Physiol.130 (4), 835847. doi: 10.1016/s1095-6433(01)00445-7

  • 61

    Baylis H. A. (1923). On Odontobius Ceti, Roussel De Vauzème, a Nematode Living on the Baleen of Whales. Ann. Mag. Nat. Hist.9 (12), 617623. doi: 10.1080/00222932308632985

  • 62

    Beach K. A. (2015). Mouthline Injuries as an Indicator of Fisheries Interactions in Hawaiian Odontocetes. [Ph.D. Thesis] (Chicago (IL: Evergreen State College).

  • 63

    Beamish R. J. (1980). Adult Biology of the River Lamprey (Lampetra Ayresi) and the Pacific Lamprey (Lampetra Tridentata) From the Pacific Coast of Canada. Can. J. Fish Aquat. Sci.37, 19061923. doi: 10.1139/f80-232

  • 64

    Bearzi M. Patonai K. (2010). Occurrence of the Barnacle (Xenobalanus globicipitis) on Coastal and Offshore Common Bottlenose Dolphins (Tursiops Truncatus) in Santa Monica Bay and Adjacent Areas, California. Bull. S. Calif. Acad. Sci.109, 3744. doi: 10.3160/0038-3872-109.2.37

  • 65

    Becker P. R. Wilkinson D. M. Lillestolen T. I. (1994). “Marine Mammal Health and Stranding Response Program: Program Development Plan,” in NOAA Technical Memorandum NMFS-OPR-94-2 (Silver Spring, MD: National Oceanic and Atmospheric Administration).

  • 66

    Bellido J. J. Castillo J. J. Farfán M. Á. Martín J. J. Mons J. L. Real R. (2006). Ejemplar enfermo de marsopa Phocoena phocoena. Galemys18, 12.

  • 67

    Beneden P. (1870). Les Cétacés, Leurs Commensaux Et Leurs Parasites. Bull. Acad. R. Belg. Cl. Sci.29 (2), 347368.

  • 68

    Bennet F. D. (1837). On the Natural History of the Spermaceti Whale (Physeter Macrocephalus, Lac.). Proc. Zool. Soc Lond.1, 3942.

  • 69

    Bennett F. D. (1840). Narrative of a Whaling Voyage Round the Globe, From the Year 1833 to 1836 Vol. 2 (London:Richard Bennet). doi: 10.5962/bhl.title.19771

  • 70

    Benz G. Greiner E. Bowen S. Goetz L. Evou N. (2011). Odd Association and Range Extension of Caligus Rufimaculatus Wilson 1905; Caligidae, Siphonostomatoida, Copepoda. Gulf Caribb. Res.23 (1), 4953. doi: 10.18785/gcr.2301.05

  • 71

    Bergami E. Caroselli E. Vaccari L. Corsi I. Semenov A. Macali A. (2021). Pioneer Settlement of the Cold-Water Coral Desmophyllum Dianthus (Esper 1794) on Plastic. Coral Reefs40, 13551360. doi: 10.1007/s00338-021-02131-9

  • 72

    Berland B. Krakstad J.-O. Nöttestad L. Axelsen B. E. Vaz-Velho F. Bauleth- D’Almeida G. (2003). Xenobalanus globicipitis (Crustacea: Cirripedia) on Dusky Dolphins (Lagenorhynchus Obscurus) Off Namibia: Hitch-Hiker's Guide to the Seas. 15th Biennial Conference on the Biology of Marine Mammals (NC, U. S: Greensboro).

  • 73

    Bermúdez-Villapol L. A. Sayegh A. J. Estevez M. A. Rangel M. S. Rosso C. Vera N. I. (2006). Notes on the Pygmy Killer Whale Feresa Attenuata Gray 1874 (Cetacea: Delphinidae) in Venezuela, Southeastern Caribbean. Lat. Am. J. Aquat. Mamm.5(2), 135139. doi: 10.5597/lajam00103

  • 74

    Bertulli C. G. Cecchetti A. Van Bressem M. F. Van Waerebeek K. (2012). Skin Disorders in Common Minke Whales and White-Beaked Dolphins Off Iceland, a Photographic Assessment. J. Mar. Anim. Ecol.5, 2940.

  • 75

    Bertulli C. G. Rasmussen M. H. Rosso M. (2016). An Assessment of the Natural Marking Patterns Used for Photo-Identification of Common Minke Whales and White-Beaked Dolphins in Icelandic Waters. J. Mar. Biolog. Assoc. U.K.96 (04), 807819. doi: 10.1017/S0025315415000284

  • 76

    Berzin A. A. (1972). The Sperm Whale (Jerusalem: Israel Program). Sci. Transl.

  • 77

    Berzin A. A. Vlasova L. P. (1982). Fauna of the Cetacea Cyamidae (Amphipoda) of the World Ocean. Invest. Cet.13, 149164.

  • 78

    Best P. B. (1969a). The Sperm Whale (Physeter Catodon) Off the West Coast of South Africa. 3. Reproduction in the Male. Investl. Rep. Div. Sea Fish. S. Afr.78, 120.

  • 79

    Best P. B. (1969b). The Sperm Whale (Physeter Catodon) Off the West Coast of South Africa. 4. Distribution and Movements. Investl. Rep. Div. Sea Fish. S. Afr.78, 112.

  • 80

    Best P. B. (1971). Stalked Barnacles Conchoderma auritum on an Elephant Seal: Occurrence of Elephant Seals on South African Coast. Afr. Zool.6 (2), 181185. doi: 10.1080/00445096.1971.11447410

  • 81

    Best P. B. (1977). Two Allopatric Forms of Bryde’s Whale Off South Africa. Rep. Int. Whal. Commn.1, 1038.

  • 82

    Best P. B. (1979). “Social Organization in Sperm Whales, Physeter Macrocephalus,” in Behavior of Marine Animals. Eds. WinnH. E.OllaB. L. (Boston, MA: Springer), 227289. doi: 10.1007/978-1-4684-2985-5_7

  • 83

    Best P. B. (1982). Seasonal Abundance, Feeding, Reproduction, Age and Growth in Minke Whales Off Durban (With Incidental Observations From the Antarctic). Rep. Int. Whal. Commn.32, 759786.

  • 84

    Best P. B. (1991). The Presence of Coronuline Barnacles on a Southern Right Whale Eubalaena Australis. S. Afr. J. Mar. Sci.11 (1), 585587. doi: 10.2989/025776191784287763

  • 85

    Best P. B. (2007). Whales and Dolphins of the Southern African Subregion (Cambridge: Cambridge University Press).

  • 86

    Best P. B. Meÿer M. A. (2010). “Neglected But Not Forgotten—Southern Africa’s Dusky Dolphins,” in The Dusky Dolphin. Eds. WürsigB.WürsigM. (San Diego: Academic Press), 291311, ISBN: 9780123737236. doi: 10.1016/B978-0-12-373723-6.00014-X

  • 87

    Betancur R. R. Broughton R. E. Wiley E. O. Carpenter K. Lopez J. A. Li C. et al . (2013). The Tree of Life and a New Classification of Bony Fishes. PloS Curr.1, 145. doi: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288

  • 88

    Bianucci G. Di Celma C. Landini W. Buckeridge J. (2006a). Palaeoecology and Taphonomy of an Extraordinary Whale Barnacle Accumulation From the Plio-Pleistocene of Ecuador. Palaeogeogr. Palaeoclimatol. Palaeoecol.242 (3-4), 326342. doi: 10.1016/j.palaeo.2006.07.004

  • 89

    Bianucci G. Landini W. Buckeridge J. (2006b). Whale Barnacles and Neogene Cetacean Migration Routes. N. Z. J. Geol. Geophys.49 (1), 115120. doi: 10.1080/00288306.2006.9515152

  • 90

    Birincioğlu S. S. Aypak S. Avcı H. Birincioğlu B. İpek E. Akkoç A. N. (2017). Pathological and Parasitological Investigations in an Adult Bottlenose Dolphin (Tursiops Truncatus). Kafkas Univ Vet. Fak Derg23 (6), 10111014. doi: 10.9775/kvfd.2017.18016

  • 91

    Blome D. Riemann F. (1999). Antarctic Sea Ice Nematodes, With Description of Geomonhystera Glaciei Sp. Nov. (Monhysteridae). Mitt. Hamb. Zool. Mus. Inst.96, 1520.

  • 92

    Blum S. Fong J. (2016). CAS Invertebrate Zoology (IZ). Version 14.2 (California Academy of Sciences). Available at: https://www.gbif.org/occurrence/609385701 (Accessed October 6, 2021).

  • 93

    Boero F. Bucci C. Colucci A. M. R. Gravili C. Stabili L. (2007). Obelia (Cnidaria, Hydrozoa, Campanulariidae): A Microphagous, Filter-Feeding Medusa. Mar. Ecol.28, 178183. doi: 10.1111/j.1439-0485.2007.00164.x

  • 94

    Boguski D. A. Reid S. B. Goodman D. H. Docker M. F. (2012). Genetic Diversity, Endemism and Phylogeny of Lampreys Within the Genus Lampetra Sensu Stricto (Petromyzontiformes: Petromyzontidae) in Western North America. J. Fish Biol.81 (6), 18911914. doi: 10.1111/j.1095-8649.2012.03417.x

  • 95

    Bordino P. González R. (1992). Presencia Del Parásito Phyllobothrium Sp. (Cestoda) Y Del Foronte Conchoderma auritum (Crestacea, Cirripedia) Sobre Mesoplodon Layardii (Cetacea, Ziphiidae) (Buenos Aires, Argentina: V Reunión de Trabajo de Especialistas en Mamíferos Acuáticos de América del Sur).

  • 96

    Borradaile L. A. (1903). “Marine Crustaceans. VII. The Barnacles,” in The Fauna and Geography of the Maldive and Laccadive Archipelagoes, Being an Account of the Work Carried on and of Collections Made by an Expedition During Years 1899 and 1900. Ed. GardinerJ. S. (Cambridge: Cambridge University Press), 440443.

  • 97

    Borradaile L. A. (1916). Crustacea. Part III. - Cirripedia. Br. Antarct. Terra Nova Exped. 1910. Zool.3, 127136.

  • 98

    Bortolotto G. A. Kolesnikovas C. K. M. Freire A. S. Simões-Lopes P. C. (2016). Young Humpback Whale Megaptera Novaeangliae Feeding in Santa Catarina Coastal Waters, Southern Brazil, and a Ship Strike Report. Mar. Biodivers. Rec.9 (1), 16. doi: 10.1186/s41200-016-0043-4

  • 99

    Bosselaers M. Collareta A. (2016). The Whale Barnacle Cryptolepas Rhachianecti (Cirripedia: Coronulidae), a Phoront of the Grey Whale Eschrichtius Robustus (Cetacea: Eschrichtiidae), From a Sandy Beach in The Netherlands. Zootaxa4154 (3), 331338. doi: 10.11646/zootaxa.4154.3.8

  • 100

    Bosselaers M. Van Nieulande F. Collareta A. (2017). A New Record of Cetopirus Complanatus (Cirripedia: Coronulidae), an Epibiont of Right Whales (Cetacea: Balaenidae: Eubalaena Spp.), From a Beach Deposit of Mediterranean Spain. Atti Soc Toscana Sci. Nat.124, 4348. doi: 10.2424/ASTSN.M.2017.17

  • 101

    Bouvier E. L. (1910). Quelques Arthropodes Recueillis Aux Iles Kerguelen. Bull. Mus. Nat. d'Hist. Nat.26 (2), 190193.

  • 102

    Bowman T. E. (1955). A New Genus and Species of Whale-Louse (Amphipoda: Cyamidae) From the False Killer Whale. Bull. Mar. Sci.5, 315320.

  • 103

    Bowman T. E. (1958). First Pacific Record of the Whale-Louse Genus Syncyamus (Amphipoda: Cyamidae). Pac. Sci.12, 181182.

  • 104

    Bowman T. E. (1971). Cirolana Narica N. Sp., a New Zealand Isopod (Crustacea) Found in the Nasal Tract of the Dolphin Cephalorhynchus Hectori. Beaufortia19 (252), 107112.

  • 105

    Bradford A. L. Weller D. W. Lang A. R. Tsidulko G. A. Burdin A. M. Brownell R. L. Jr. (2011). Comparing Observations of Age at First Reproduction in Western Gray Whales to Estimates of Age at Sexual Maturity in Eastern Gray Whales Vol. 140 (Agadir: Publications, Agencies and Staff of the U.S. Department of Commerce).

  • 106

    Brandt A. (1872). Bericht Über Die Cyamiden Des Zoologischen Museum Der Kaiserlichen Academie Der Wissenscheften Zu St. Petersbourg. Bull. Acad. Imp. Sci. St. Petersbourg18, 113134.

  • 107

    Bridge D. Cunningham C. W. DeSalle R. Buss L. W. (1995). Class-Level Relationships in the Phylum Cnidaria: Molecular and Morphological Evidence. Mol. Biol. Evol.12 (4), 679689. doi: 10.1093/oxfordjournals.molbev.a040246

  • 108

    Briggs K. T. Morejohn G. V. (1972). Barnacle Orientation and Water Flow Characteristics in California Grey Whales. J. Zool.167, 287292. doi: 10.1111/j.1469-7998.1972.tb03112.x

  • 109

    Broch H. (1924). Cirripedia Thoracica Von Norwegen Und Dem Norwegischen Nordmeere. Eine Systematische Und Biologisch-Tiergeographische Studie. Skr. Vidensk. Selsk.17, 121 pp.

  • 110

    Brotz L. Cheung W. W. Kleisner K. Pakhomov E. Pauly D. (2012). “Increasing Jellyfish Populations: Trends in Large Marine Ecosystems,” in Jellyfish Blooms. Eds. PittK. A.LucasC. H. (Dordrecht: Springer), 320. doi: 10.1007/978-94-007-5316-7_2

  • 111

    Brownell R. L. (1975). Progress Report on the Biology of the Franciscana Dolphin in Uruguayan Waters. J. Fish. Res. Board Can.32 (7), 10731078. doi: 10.1139/f75-127

  • 112

    Brownell R. L. Jr. Findley L. T. Vidal O. Robles A. Silvia Manzanilla N. (1987). External Morphology and Pigmentation of the Vaquita, Phocoena Sinus (Cetacea: Mammalia). Mar. Mamm. Sci.3 (1), 2230. doi: 10.1111/j.1748-7692.1987.tb00149.x

  • 113

    Brown S. K. Roughgarden J. (1985). Growth, Morphology, and Laboratory Culture of Larvae of Balanus Glandula (Cirripedia: Thoracica). J. Crust. Biol.5 (4), 574590. doi: 10.2307/1548236

  • 114

    Brunnschweiler J. Sazima I. (2006). A New and Unexpected Host for the Sharksucker (Echeneis Naucrates) With a Brief Review of the Echeneid-Host Interactions. JMBA2-Biodivers. Rec., 13. doi: 10.1017/S1755267206004349

  • 115

    Brusca R. C. (1978). Studies on the Cymothoid Fish Symbionts of the Eastern Pacific (Isopoda, Cymothoidae) I. Biology of Nerocila californica. Crustaceana34 (2), 141154. doi: 10.1163/156854078X00718

  • 116

    Bryden M. M. (1976). Observations on a Pygmy Killer Wale, Feresa Attenuata, Stranded on the East Coast of Australia. Wildl. Res.3 (1), 2128. doi: 10.1071/WR9760021

  • 117

    Brzica H. (2004). Morphological and Morphometric Characteristics of the Ectoparasite Pennella balaenopterae (Copepoda, Siphonostomatida, Pennellidae) of Whales (Cetacea) From the Adriatic Sea. [Student Research Paper] (Faculty of Veterinary Medicine of Zagreb). [In Croatian].

  • 118

    Buckeridge J. S. (2012). Opportunism and the Resilience of Barnacles (Cirripedia: Thoracica) to Environmental Change. Integr. Zool.7 (2), 137146. doi: 10.1111/j.1749-4877.2012.00286.x

  • 119

    Buckeridge J. S. Chan B. K. K. Lee S. W. (2018). Accumulations of Fossils of the Whale Barnacle Coronula Bifida Bronn 1831 (Thoracica: Coronulidae) Provides Evidence of a Late Pliocene Cetacean Migration Route Through the Straits of Taiwan. Zool. Stud.57, e54. doi: 10.6620/ZS.2018.57-54

  • 120

    Buckeridge J. S. Chan B. K. K. Lin J. P. (2019). Paleontological Studies of Whale Barnacles in Taiwan Reveal New Cetacean Migration Routes in the Western Pacific Since the Miocene. Zool. Stud.58, e38. doi: 10.6620/ZS.2019.58-39

  • 121

    Bushuev S. G. (1990). A Study of the Population Structure of the Southern Minke Whale (Balaenoptera Acutorostrata Lacépède) Based on Morphological and Ecological Variability. Rep. Int. Whal. Commn.40, 317324.

  • 122

    Buzeta R. (1963). Cyamidae (Crustacea: Amphipoda) En Physeter Catodon L. Capturados En Chile Con Descripción De Una Nueva Especie, Cyamus Bahamondei. Rev. Biol. Mar.3 (1-2), 126137.

  • 123

    Cadenat J. (1953). Les Rémoras Des Côtes Du Sénégal. Bull. Inst. Fr. Afr. Noire15 (2), 672683.

  • 124

    Caldwell D. K. Caldwell M. C. Rathjen W. F. Sullivan J. R. (1971a). Cetaceans From the Lesser Antillean Island of St Vincent.. Fish. Bull.69 (2), 303312.

  • 125

    Caldwell D. K. Neuhauser H. Caldwell M. C. Coolidge H. W. (1971b). Recent Records of Marine Mammals from the Coasts of Georgia and South Carolina. Cetology5, 112.

  • 126

    Calman W. T. (1920). A Whale-Barnacle of the Genus Xenobalanus From Antarctic Seas. Ann. Mag. Nat. Hist.6, 165166. doi: 10.1080/00222932008632427

  • 127

    Campbell M. A. Chen W. J. Lopez J. A. (2013). Are Flatfishes (Pleuronectiformes) Monophyletic? Mol. Phylogenet. Evol.69 (3), 664673. doi: 10.1016/j.ympev.2013.07.011

  • 128

    Carim K. J. Dysthe J. C. Young M. K. McKelvey K. S. Schwartz M. K. (2017). A Noninvasive Tool to Assess the Distribution of Pacific Lamprey (Entosphenus Tridentatus) in the Columbia River Basin. PloS One12 (1), e0169334. doi: 10.1371/journal.pone.0169334

  • 129

    Carlisle A. B. Allan E. A. Kim S. L. Meyer L. Port J. Scherrer S. et al . (2021). Integrating Multiple Chemical Tracers to Elucidate the Diet and Habitat of Cookiecutter Sharks. Sci. Rep.11 (1), 116. doi: 10.1038/s41598-021-89903-z

  • 130

    Carlucci R. Ricci P. Miccoli Sartori S. Cipriano G. Cosentino A. Lionetti A. et al . (2015). Changes in Behaviour and Group Size of Stenella Coeruleoalba in the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea). Biol. Mar. Mediterr.22, 266270.

  • 131

    Carl G. C. (1945). Personal Communication. British Columbia Provincial Museum

  • 132

    Carl G. C. Wilby G. V. (1945). Some Marine Fish Records for British Columbia. Can. Field Nat.39 (1), 2830. doi: 10.2307/1438189

  • 133

    Carrillo J. M. Overstreet R. M. Raga J. A. Aznar F. J. (2015). Living on the Edge: Settlement Patterns by the Symbiotic Barnacle Xenobalanus globicipitis on Small Cetaceans. PloS One10 (6), e0127367. doi: 10.1371/journal.pone.0127367

  • 134

    Carvalho V. L. Bevilaqua C. M. L. Iñiguez A. M. Mathews-Cascond H. Bezerra Ribeiro F. Bezerra Pessoae L. M. et al . (2010). Metazoan Parasites of Cetaceans Off the Northeastern Coast of Brazil. Vet. Parasitol.173, 116122. doi: 10.1016/j.vetpar.2010.06.023

  • 135

    Casale P. D’Addario M. Freggi D. Argano R. (2012). Barnacles (Cirripedia, Thoracica) and Associated Epibionts From Sea Turtles in the Central Mediterranean. Crustaceana85, 533549. doi: 10.1163/156854012X634393

  • 136

    Casale P. Freggi D. Basso R. Argano R. (2004). Epibiotic Barnacles and Crabs as Indicators of Caretta Caretta Distribution and Movements in the Mediterranean Sea. J. Mar. Biolog. Assoc. U.K.84 (5), 10051006. doi: 10.1017/S0025315404010318h

  • 137

    Cerioni S. Mariniello L. (1996). Metazoi Parassiti Di Stenella Coeruleoalba (Cetacea: Delphinidae) Spiaggiata Lungo Le Coste Laziali Dal 1985 Al 1991. Parassitologia38, 505510.

  • 138

    Chan B. Corbari L. Rodríguez Moreno P. Tsang L. (2017). Molecular Phylogeny of the Lower Acorn Barnacle Families (Bathylasmatidae, Chionelasmatidae, Pachylasmatidae and Waikalasmatidae) (Cirripedia: Balanomorpha) With Evidence for Revisions in Family Classification. Zool. J. Linn. Soc180 (3), 542555. doi: 10.1093/zoolinnean/zlw005

  • 139

    Chapman G. Santler J. E. (1955). Aspects of the Fauna and Flora of the Azores. V. Crustacea. Ann. Mag. Nat. Hist.8, 371376. doi: 10.1080/00222935508655652

  • 140

    Cheang C. C. Tsang L. M. Chu K. H. Cheng I. J. Chan B. K. K. (2013). Host-Specific Phenotypic Plasticity of the Turtle Barnacle Chelonibia testudinaria: A Widespread Generalist Rather than a Specialist. PLOS ONE8(3): e57592. doi: 10.1371/journal.pone.0057592

  • 141

    Chemnitz J. H. (1785). Neues Systematisches Conchylien-Cabinet (Nürnberg: Raspe). doi: 10.5962/bhl.title.120065

  • 142

    Chemnitz J. H. Martini F. H. W. (1790). Systematiches Conchilien-Cabinet Von Martini Und Chemnitz (Nurnberg: Bauer and Raspe).

  • 143

    Chen H. N. Hoeg J. T. Chan B. K. (2013). Morphometric and Molecular Identification of Individual Barnacle Cyprids From Wild Plankton: An Approach to Detecting Fouling and Invasive Barnacle Species. Biofouling29 (2), 133145. doi: 10.1080/08927014.2012.753061

  • 144

    Chernova O. F. Shpak O. V. Kiladze A. B. Rozhnov V. V. (2017). Epidermal Molting in the Bowhead Whale Balaena Mysticetus. Biol. Bull. Russ. Acad. Sci.44, 591602. doi: 10.1134/S1062359017050065

  • 145

    Chevreux E. (1913a). Amphipodes. Deuxième Expédition Antarctique Française, (1908–1910) Commandée Par Le Dr. Jean Charcot. Sci. naturelles: Documents scientifiques, 79186. doi: 10.5962/bhl.title.6956

  • 146

    Chevreux E. (1913b). Sur Quelques Intéressantes Espèces D'amphipodes Provenant Des Parages De Monaco Et Des Pêches Pélagiques De La Princesse-Alice Et De I'Hirondelle II En Méditerranée. Bull. Inst. Océanogr. Monaco262, 126.

  • 147

    Choi K. H. Kim C. H. (1994). Naupliar Development of Harpacticus Nipponicus Ito (Copepoda: Harpacticoida: Harpacticidae) Reared in the Laboratory. Korean J. Syst. Zool.10 (2), 217229.

  • 148

    Christensen I. (1985). First Record of Gooseneck Barnacles (Conchoderma auritum) on a Minke Whale (Balaenoptera Acutorostrata). ICES C.M. 1985/N:9ICES.

  • 149

    Ciçek E. Oktener A. Capar O. B. (2007). First Report of Pennella balaenopterae Koren and Danielssen 1877 (Copepoda: Pennelidae) From Turkey. Turkiye Parazitol. Derg.31 (3), 239241.

  • 150

    Clapham P. J. Leimkuhler E. Gray B. A. Mattila D. K. (1995). Do Humpback Whales Exhibit Lateralized Behaviour? Anim. Behav.50 (1), 7382. doi: 10.1006/anbe.1995.0222

  • 151

    Clarke R. (1956). Sperm Whales of the Azores. Discovery Rep.28, 237298.

  • 152

    Clarke R. (1966). The Stalked Barnacle Conchoderma, Ectoparasitic on Whales. Norsk Hvalfangst-Tidende55, 153168.

  • 153

    Clemens B. J. Weitkamp L. Siwicke K. Wade J. Harris J. Hess J. et al . (2019). Marine Biology of the Pacific Lamprey Entosphenus Tridentatus. Rev. Fish Biol. Fish.29 (4), 767788. doi: 10.1007/s11160-019-09578-8

  • 154

    Clua E. E. Manire C. A. Garrigue C. (2014). Biological Data of Pygmy Killer Whale (Feresa Attenuata) From a Mass Stranding in New Caledonia (South Pacific) Associated With Hurricane Jim in 2006. Aquat. Mamm.40 (2), 162172. doi: 10.1578/AM.40.2.2014.162

  • 155

    Cockrill W. R. (1960). Pathology of the Cetacea. A veterinary study on whales. Brit. Vet. J.116, 128. doi: 10.1016/S0007-1935(17)44304-1

  • 156

    Cocks A. H. (1885). Additional Notes on the Fin-Whale Fishery on the North European Coast. Zoologist3 (9), 134142.

  • 157

    Collareta A. Bosselaers M. Bianucci G. (2016). Jumping From Turtles to Whales: A Pliocene Fossil Record Depicts an Ancient Dispersal of Chelonibia on Mysticetes. Riv. It. Paleont. Strat.122 (2), 3544. doi: 10.13130/2039-4942/7229

  • 158

    Collareta A. Insacco G. Reitano A. Catanzariti R. Bosselaers M. Montes M. et al . (2018b). Fossil Whale Barnacles From the Lower Pleistocene of Sicily Shed Light on the Coeval Mediterranean Cetacean Fauna. Carnets Géologie18 (2), 922. doi: 10.4267/2042/65747

  • 159

    Collareta A. Regattieri E. Zanchetta G. Lambert O. Catanzariti R. Bosselaers M. et al . (2018a). New Insights on Ancient Cetacean Movement Patterns From Oxygenisotope Analyses of a Mediterranean Pleistocene Whale Barnacle. Neues Jahrb. Geol. Paläontol.288 (2), 143159. doi: 10.1127/njgpa/2018/0729

  • 160

    Collet R. (1912). Norges Pattedyr (Kristiania:H. Aschehoug & Co. (W. Nygaard). doi: 10.5962/bhl.title.14929

  • 161

    Collet R. (1986). On the External Characters of Rudolphi's Rorqual (Balaenoptera Borealis). Proc. Zool. Soc Lond.17-18, 243265.

  • 162

    Collette B. B. (2003). “Family Echeneidae,” in The Living Marine Resources of the Western Central Atlantic. Ed. CarpenterK. E. (Rome: FAO Species Identification Guide for Fishery Purposes and Amer. Soc. Ich. Herp. Spec. Publ), 14141419.

  • 163

    Collette B. B. Curtis M. Williams J. T. Smith-Vaniz W. F. Pina Amargos F. (2015). “Echeneis naucrates” in IUCN Red List of Threatened Species. e.T190393A76649216. doi: 10.2305/IUCN.UK.2015-4.RLTS.T190393A15603110.en

  • 164

    Collette B. B. Klein-MacPhee G. (2002). Bigelow and Schroeder’s Fishes of the Gulf of Maine (Washington, DC: Smithsonian Institution Press).

  • 165

    Combes C. (2001). Parasitism: The Ecology and Evolution of Intimate Interactions (Chicago: University of Chicago Press).

  • 166

    Compagno L. J. V. (1984). FAO Species Catalogue. Vol. 4. Sharks of the World. An Annotated and Illustrated Catalogue of Shark Species Known to Date. Part 1. Hexanchiformes to Lamniformes. FAO Fisheries Synopsis125, 9396.

  • 167

    Conlan K. E. (1991). Precopulatory Mating Behaviour and Sexual Dimorphism in the Amphipod Crustacea. Hydrobiologia223, 255282. doi: 10.1007/BF00047644

  • 168

    Conway D. V. P. Ellis C. J. Humpheryes I. G. (1990). Deep Distributions of Oceanic Cirripede Larvae in the Sargasso Sea and Surrounding North Atlantic Ocean. Mar. Biol.105 (3), 419428. doi: 10.1007/BF01316313

  • 169

    Cornaglia E. Rebora L. Gili C. Di Guardo G. (2000). Histopathological and Immunohistochemical Studies on Cetaceans Found Stranded on the Coast of Italy Between 1990 and 1997. J. Vet. Med. Ser. A47 (3), 129142. doi: 10.1046/j.1439-0442.2000.00268.x

  • 170

    Cornelius P. F. (1990). European Obelia (Cnidaria, Hydroida): Systematics and Identification. J. Nat. Hist.24 (3), 535578. doi: 10.1080/00222939000770381

  • 171

    Cornwall I. E. (1924). Notes on West American Whale Barnacles. Proc. Calif. Acad. Sci.13, 421431.

  • 172

    Cornwall I. E. (1927). Some North Pacific Whale Barnacles. Contrib. Can. Biol. Fish.3 (23), 503517. doi: 10.1139/f26-023

  • 173

    Cornwall I. E. (1928). Collecting at Cachalot Whaling Station. Can. Field-Nat.42, 912.

  • 174

    Cornwall I. E. (1955). The Barnacles of British Columbia. Br. Col. Prov. Mus. Dept.7, 569.

  • 175

    Cortés-Peña D. (2019) Orca at Chañaral De Aceituno, Freirina, Atacama Region, Chile. Available at: https://www.facebook.com/groups/CetalFauna/permalink/206670.2686783266 (Accessed May 20, 2021).

  • 176

    Costa A. (1866). Descrizione Di Una Especie Di Cyamus Parassita De Delfini: C. Chelipes. Ann. Mus. Zool. Napoli3, 8283.

  • 177

    Costello M. J. (2006). Ecology of Sea Lice Parasitic on Farmed and Wild Fish. Trends Parasitol.22 (10), 475483. doi: 10.1016/j.pt.2006.08.006

  • 178

    Creaser C. W. Hubbs C. L. (1922). A Revision of the Holarctic Lampreys Vol. 120 (University of Michigan Mus. Zool).

  • 179

    Crespo-Picazo J. L. García-Parraga D. Domènech F. Tomás J. Aznar F. J. Ortega J. et al . (2017). Parasitic Outbreak of the Copepod Balaenophilus Manatorum in Neonate Loggerhead Sea Turtles (Caretta Caretta) From a Head-Starting Program. BMC V. Res.13 (1), 17. doi: 10.1186/s12917-017-1074-8

  • 180

    Cressey R. F. Lachner E. A. (1970). The Parasitic Copepod Diet and Life History of Diskfishes (Echeneidae). Copeia, 310318. doi: 10.2307/1441652

  • 181

    Crisp D. J. (1955). The Behaviour of Barnacle Cyprids in Relation to Water Movement Over a Surface. J. Exp. Biol.32, 569590. doi: 10.1242/jeb.32.3.569

  • 182

    Crisp D. J. Barnes H. (1954). The Orientation and Distribution of Barnacles at Settlement With Particular Reference to Surface Contour. J. Anim. Ecol.23 (1), 142. doi: 10.2307/1664

  • 183

    Crozier W. J. (1916). On a Barnacle, Conchoderma Virgatum, Attached to a Fish, Diodon Hystrix. Am. Nat.50 (598), 636640. doi: 10.1086/279573

  • 184

    Cunha A. F. Collins A. G. Marques A. C. (2017). Phylogenetic Relationships of Proboscoida Broch 1910 (Cnidaria, Hydrozoa): Are Traditional Morphological Diagnostic Characters Relevant for the Delimitation of Lineages at the Species, Genus, and Family Levels? Mol. Phylogenet. Evol.106, 118135. doi: 10.1016/j.ympev.2016.09.012

  • 185

    Cunha A. F. Genzano G. N. Marques A. C. (2015). Reassessment of Morphological Diagnostic Characters and Species Boundaries Requires Taxonomical Changes for the Genus Orthopyxis L. Agassiz 1862 (Campanulariidae, Hydrozoa) and Some Related Campanulariids. PloS One10 (2), e0117553. doi: 10.1371/journal.pone.0117553

  • 186

    Dailey M. D. Brownell J. R.L. (1972). “A Checklist of Marine Mammal Parasites,” in Mammals of the Sea: Biology and Medicine. Ed. RidgwayS. H. (Springfield, IL: Charles C. Thomas), 528589.

  • 187

    Dailey M. D. Gulland F. M. Lowenstine L. J. Silvagni P. Howard D. (2000). Prey, Parasites and Pathology Associated With the Mortality of a Juvenile Gray Whale (Eschrichtius Robustus) Stranded Along the Northern California Coast. Dis. Aquat. Org.42 (2), 111117. doi: 10.3354/dao042111

  • 188

    Dailey M. D. Haulena M. Lawrence J. (2002). First Report of a Parasitic Copepod (Pennella balaenopterae) Infestation in a Pinniped. J. Zoo Wildl. Med.33 (1), 6265. doi: 10.1638/1042-7260(2002)033[0062:FROAPC]2.0.CO;2

  • 189

    Dailey M. Stroud R. (1978). Parasites and Associated Pathology Observed in Cetaceans Stranded Along the Oregon Coast. J. Wildl. Dis.14, 503511. doi: 10.7589/0090-3558-14.4.503

  • 190

    Dailey M. D. Vogelbein W. (1991). Parasite Fauna of 3 Species of Antarctic Whales With Reference to Their Use as Potential Stock Indicators. Fish. Bull.89 (3), 355365.

  • 191

    Dailey M. D. Walker W. A. (1978). Parasitism as a Factor (?) in Single Strandings of Southern California Cetaceans. J. Parasitol.64 (4), 593596. doi: 10.2307/3279939

  • 192

    Dall W. H. (1872). On the Parasites of the Cetaceans of the N.W. Coast of America, With Descriptions of New Forms. Proc. Calif. Acad. Sci.4, 299301. doi: 10.1080/00222937308696808

  • 193

    Dalla Rosa L. Secchi E. R. (1997). Stranding of a Blue Whale (Balaenoptera Musculus) in Southern Brazil: ‘True’or Pygmy. Rep. Int. Whal. Commn.47, 425430.

  • 194

    Dalley R. Crisp D. J. (1981). Conchoderma: A Fouling Hazard to Ships Underway. Mar. Biol. Lett.2 (3), 141152.

  • 195

    Danilewicz D. Rosas F. Bastida R. Marigo J. Muelbert M. Rodriguez D. et al . (2002). Report of the Working Group on Biology and Ecology. Lat. Am. J. Aquat. Mamm.1, 2542. doi: 10.5597/lajam00005

  • 196

    Danyer E. Tonay A. M. Aytemiz I. Dede A. Yildirim F. Gurel A. (2014). First Report of Infestation by a Parasitic Copepod (Pennella balaenopterae) in a Harbour Porpoise (Phocoena Phocoena) From the Aegean Sea: A Case Report. Veterinarni Medicina59 (8), 403. doi: 10.17221/7661-VETMED

  • 197

    Darwin C. (1851). A Monograph on the Subclass Cirripedia. Vol. 1. The Lepadidae (London: The Ray Society).

  • 198

    Darwin C. (1854). A Monograph on the Sub-Class Cirripedia, Vol. 2. The Balaenidae. (London: The Ray Society).

  • 199

    Davis W. M. (1874). Nimrod of the Sea; or, the American Whaleman (New York: Harper & Brothers). doi: 10.5962/bhl.title.18173

  • 200

    Debrot A. O. (1992). Notes on a Gervais’beaked Whale, Mesoplodon Europaeus, and a Dwarf Sperm Whale, Kogia Simus, Stranded in Curaçao, Netherlands Antilles. Mar. Mamm. Sci.8 (2), 172178. doi: 10.1111/j.1748-7692.1992.tb00379.x

  • 201

    Delaney M. A. Ford J. K. B. Tang K. Gaydos J. K. (2016). Mesoparasitic Popepod (Pennella balaenopterae) Infestation of a Stranded Offshore Orca (Orcinus Orca) in Southeast Alaska: Review of Significance as a Health Indicator in Cetaceans. Int. Assoc. Aquat. Anim. Med. 21-26 May. [Poster]

  • 202

    Denkinger J. Alarcon D. (2017). Orcas of the Galápagos Islands 21-26 May. [Poster] (CETACEA Project).

  • 203

    de Pinna M. C. C. (1998). “Phylogenetic Relationships of Neotropical Siluriformes (Teleostei: Ostariophysi): Historical Overview and Synthesis of Hypotheses,” in Phylogeny and Classification of Neotropical Fishes. Eds. MalabarbaL. R.ReisR. E.VariR. P.LucenaZ. M.LucenaC. A. S. (Porto Alegre: EDIPUCRS), 279330.

  • 204

    de Pinna M. C. C. Wosiacki W. B. (2003). “Family Trichomycteridae (Pencil or Parasitic Catfishes),” in Check List of the Freshwater Fishes of South and Central America. Eds. ReisR. E.KullanderS. O.FerrarisC. J. (Porto Alegre: EDIPUCRS), EDIPUCRS), 270290.

  • 205

    Devaraj M. Sam Bennett P. (1974). Occurrence of Xenobalanus globicipitis (Steenstrup) on the Finless Black Porpoise, Neomeris Phocoenoides in Indian Seas. India. J. Fish.21, 579581.

  • 206

    Díaz-Aguirre F. Salinas C. Navarrete S. Castillo V. Castilla C. (2012). First Record of the Commensal Barnacle (Xenobalanus globicipitis) on Common Bottlenose Dolphins (Tursiops Truncatus) in Chile. Aquat. Mamm.38 (1), 7680. doi: 10.1578/AM.38.1.2012.76

  • 207

    Díaz-Gamboa R. E. (2015). Varamiento De Orcas Pigmeas (Feresa Attenuata Gray 1874) En Yucatán: Reporte De Caso. Bioagrociencias8 (1), 3643.

  • 208

    Di Beneditto A. P. M. Ramos R. M. A. (2000). Records of the Barnacla Xenobalanus globicipitis (Steenstrup 1851) on Small Cetaceans of Brazil. Biotemas13 (2), 159165.

  • 209

    Di Beneditto A. P. M. Ramos R. M. A. (2001). Biology and Conservation of the Franciscana (Pontoporia Blainvillei) in the North of Rio De Janeiro State, Brazil. J. Cetacean Res. Manage.3 (2), 185192. doi: 10.5007/%x

  • 210

    Di Beneditto A. P. M. Ramos R. M. A. (2004). Biology of the Marine Tucuxi Dolphin (Sotalia Fluviatilis) in South-Eastern Brazil. J. Mar. Biolog. Assoc. U.K.84 (6), 12451250. doi: 10.1017/S0025315404010744h

  • 211

    Dixon J. M. (1980). A Recent Stranding of the Strap-Toothed Whale, Mesoplodon Layardi (Gray) (Ziphiidae) From Victoria, and a Review of Australian Records of the Species. Vict. Nat.97, 3441.

  • 212

    Docker M. F. Haas G. R. Goodman D. H. Reid S. B. Heath D. D. (2007). PCR-RFLP Markers Detect 29 Mitochondrial Haplotypes in Pacific Lamprey (Entosphenus Tridentatus). Mol. Ecol. Notes7, 350353. doi: 10.1111/j.1471-8286.2006.01605.x

  • 213

    Docker M. F. Youson J. H. Beamish R. J. Devlin R. H. (1999). Phylogeny of the Lamprey Genus Lampetra Inferred From Mitochondrial Cytochrome B and ND3 Gene Sequences. Can. J. Fish. Aquat. Sci.56, 23402349. doi: 10.1139/f99-171

  • 214

    Dollfus R. (1968). Xenobalanus globicipitis Steenstrup (Cirripedia, Thoracica): Collected on Tursiops Truncatus (Montagu) Near the Northern Coast of Morocco. Bull. Inst. Pêches Marit. Maroc.16, 5559. [In French].

  • 215

    Domènech F. Badillo F. J. Tomás J. Raga J. A. Aznar F. J. (2015). Epibiont Communities of Loggerhead Marine Turtles (Caretta Caretta) in the Western Mediterranean: Influence of Geographic and Ecological Factors. J. Mar. Biolog. Assoc. U.K.95 (4), 851861. doi: 10.1017/S0025315414001520

  • 216

    Domènech F. Tomás J. Crespo-Picazo J. L. García-Párraga D. Raga J. A. Aznar F. J. (2017). To Swim or Not to Swim: Potential Transmission of Balaenophilus Manatorum (Copepoda: Harpacticoida) in Marine Turtles. PloS One12 (1), e0170789. doi: 10.1371/journal.pone.0170789

  • 217

    Dominici S. Bartalini M. Benvenuti M. Balestra B. (2011). Large Kings with Small Crowns: A Mediterranean Pleistocene Whale Barnacle. Bull. Soc Paleontol. Ital.50 (2), 95101. doi: 10.4435/BSPI.2011.10

  • 218

    Donnelly D. McInnes J. D. Morrice M. Andrews C. (2018). Killer Whales of Eastern Australia. Victoria: Killer Whales Australia.

  • 219

    Dorsey E. M. Stern J. S. Hoelzel A. R. Jacobsen J. (1990). Minke Whales (Balaenoptera Acutorostrata) From the West Coast of North America: Individual Recognition and Small-Scale Site Fidelity. Rep. Int. Whal. Commn.12, 357368.

  • 220

    Dreyer N. Zardus J. D. Høeg J. T. Olesen J. Yu M. C. Chan B. K. (2020). How Whale and Dolphin Barnacles Attach to Their Hosts and the Paradox of Remarkably Versatile Attachment Structures in Cypris Larvae. Org. Divers. Evol.20 (2), 233249. doi: 10.1007/s13127-020-00434-3

  • 221

    Duignan P. J. Geraci J. R. Raga J. A. Calzada N. (1992). Pathology of Morbillivirus Infection in Striped Dolphins (Stenella Coeruleoalba) From Valencia and Murcia, Spain. Can. J. Vet. Res.56, 242248.

  • 222

    Dulčić J. Dragičević B. Despalatović M. Cvitković I. Bojanić-Varezić D. Štifanić M. (2015). Lepadid Barnacles Found Attached to a Living Lobotes Surinamensis (Pisces). Crustaceana88 (6), 727731. doi: 10.1163/15685403-00003435

  • 223

    Dwyer S. L. Visser I. N. (2011). Cookie Cutter Shark (Isistius Sp.) Bites on Cetaceans, With Particular Reference to Killer Whales (Orca) (Orcinus Orca). Aquat. Mamm.37 (2), 111138. doi: 10.1578/AM.37.2.2011.111

  • 224

    Eckert K. L. Eckert S. A. (1987). Growth Rate and Reproductive Condition of the Barnacle Conchoderma Virgatum on Gravid Leatherback Sea Turtles in Caribbean Waters. J. Crust. Biol.7 (4), 682690. doi: 10.2307/1548651

  • 225

    Ellis C. J. Billett D. S. M. Angel M. V. (1983). The Distribution of Oceanic Cirripedes in the North-East Atlantic in Summer 1983 and the Connotations of the Results to the Problems of Conchoderma Fouling. Inst. Oceanogr. Sci.193.

  • 226

    Elorriaga-Verplancken F. R. Tobar-Hurtado S. Medina-López M. A. de la Cruz D. B. Urbán J. R. (2015). Potential Morphological Contributions to a Live Stranding: Abnormal Snout and Conchoderma Auritum Infestation in a Bottlenose Dolphin (Tursiops Truncatus). Aquat. Mamm.41 (2), 198. doi: 10.1578/AM.41.2.2015.198

  • 227

    Endo N. Sato K. Matsumura K. Yoshimura E. Odaka Y. Nogata Y. (2010). Species-Specific Detection and Quantification of Common Barnacle Larvae From the Japanese Coast Using Quantitative Real-Time PCR. Biofouling26 (8), 901911. doi: 10.1080/08927014.2010.531389

  • 228

    Engel M. (1994). Encalhe De Um Cachalote, Physeter Macrocephalus, Provocado Por Emalhamento Em Rede De Pesca No Litoral Da Bahia, Brasil. Florianópolis: Anais da VI Reunião de Trabalhos de Especialistas em Mamíferos Aquáticos da América do Sul. 2428.

  • 229

    Eschmeyer W. N. Fricke R. N. van der Laan R. (2017). Catalog of fishes: genera, species, references. Available at: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

  • 230

    Esteves J. M. Acosta R. Bermúdez L. Lira C. Figueredo A. (2020). Epibiosis Por Balaenophilus Unisetus (Copepoda: Harpacticoida) En Rorcual Común, Balaenoptera Physalus (Mysticeti: Balaenopteridae), Varado En Isla De Margarita, Venezuela. MAFIS - Marine Fishery Sci.33 (2), 265276. doi: 10.47193/mafis.3322020301108

  • 231

    Evans F. (1958). Growth and Maturity of the Barnacles Lepas Hillii and Lepas Anatifera. Nature182, 12451246. doi: 10.1038/1821245b0

  • 232

    Fabian H. (1950). “Bohr” Höhlen an Pottwalzähnen. Zool. Anz. Ergänzungsband zu Band145, 147162.

  • 233

    Faria M. A. DeWeerdt J. Pace F. Mayer F. X. (2013). Observation of a Humpback Whale (Megaptera novaeangliae) Birth in the Coastal Waters of Sainte Marie Island, Madagascar. Aquat. Mamm.39 (3), 296. doi: 10.1578/AM.39.3.2013.296

  • 234

    Farrapeira C. M. R. Melo A. V. D. O. M. D. Barbosa D. F. Silva K. M. E. D. (2007). Ship Hull Fouling in the Port of Recife, Pernambuco. Braz. J. Oceanogr.55 (3), 207221. doi: 10.1590/S1679-87592007000300005

  • 235

    Félix F. Bearson B. Falconí J. (2006). Epizoic Barnacles Removed From the Skin of a Humpback Whale After a Period of Intense Surface Activity. Mar. Mamm. Sci.22 (4), 979984. doi: 10.1111/j.1748-7692.2006.00058.x

  • 236

    Fernandez-Leborans G. (2001). A Review of the Species of Protozoan Epibionts on Crustaceans. III. Chonotrich Ciliates. Crustaceana74 (6), 581607. doi: 10.1163/156854001300228852

  • 237

    Ferrario M. E. Cefarelli A. O. Fazio A. Bordino P. Romero O. E. (2018). Bennettella Ceticola (Nelson Ex Bennett) Holmes on the Skin of Franciscana Dolphin (Pontoporia Blainvillei) of the Argentinean Sea: An Emendation of the Generic Description. Diatom Res.33 (4), 485497. doi: 10.1080/0269249X.2019.1572651

  • 238

    Fertl D. (1994). Occurrence Patterns and Behavior of Bottlenose Dolphins (Tursiops Truncatus) in the Galveston Ship Channel, Texas. Texas J. Sci.46, 299317.

  • 239

    Fertl D. Acevedo-Gutiérrez A. Darby F. L. (1996). A Report of Killer Whales (Orcinus Orca) Feeding on a a Carcharhinid Shark in Costa Rica. Mar. Mamm. Sci.12 (4), 606611. doi: 10.1111/j.1748-7692.1996.tb00075.x

  • 240

    Fertl D. Landry A. M. Jr (1999a). First Report of a Sharksucker (Echeneis Naucrates) on a Bottlenose Dolphin (Tursiops Truncatus), and a Re-Evaluation of Remora-Cetacean Associations. Eur. Res. Cetaceans12, 8890. doi: 10.1111/j.1748-7692.1999.tb00849.x

  • 241

    Fertl D. Landry A. M. Jr (1999b). Sharksucker (Echeneis Naucrates) on a Bottlenose Dolphin (Tursiops Truncatus) and a Review of Other Cetacean-Remora Associations. Mar. Mamm. Sci.15, 859863. doi: 10.1111/j.1748-7692.1999.tb00849.x

  • 242

    Fertl D. Landry A. M. Jr. Barros N. B. (2002). Sharksucker (Echeneis Naucrates) on a Bottlenose Dolphin (Tursiops Truncatus) From Sarasota Bay, Florida, With Comments on Remora-Cetacean Associations in the Gulf of Mexico. Copeia20 (2), 151152. doi: 10.18785/goms.2002.07

  • 243

    Findlay K. P. Best P. B. (2016). Distribution and Seasonal Abundance of Large Cetaceans in the Durban Whaling Grounds Off KwaZulu-Natal, South Africa 1972–1975. Afr. J. Mar. Sci.38 (2), 249262. doi: 10.2989/1814232X.2016.1191042

  • 244

    Findley L. T. Vidal O. (2002). Gray Whale (Eschrichtius Robustus) at Calving Sites in the Gulf of California, México. J. Cetacean Res. Manage.4 (1), 2740.

  • 245

    Fine M. L. (1970). Faunal Variation on Pelagic Sargassum. Mar. Biol.7 (2), 112122. doi: 10.1007/BF00354914

  • 246

    Fischer P. (1884). Cirrhipèdes De L’archipel De La Nouvelle-Calédonie. Bull. Soc Zool. France9, 355360.

  • 247

    Fish F. E. Battle J. M. (1995). Hydrodynamic Design of the Humpback Whale Flipper. J. Morph.225 (1), 5160. doi: 10.1002/jmor.1052250105

  • 248

    Fish F. E. Nicastro A. J. Weihs D. (2006). Dynamics of the Aerial Maneuvers of Spinner Dolphins. J. Exp. Bio.209 (4), 590598. doi: 10.1242/jeb.02034

  • 249

    Flach L. Van Bressem M. F. Pitombo F. Aznar F. J. (2021). Emergence of the Epibiotic Barnacle Xenobalanus globicipitis in Guiana Dolphins After a Morbillivirus Outbreak in Sepetiba Bay, Brazil. Estuar. Coast. Shelf Sci.263, 107632. doi: 10.1016/j.ecss.2021.107632

  • 250

    Flammang B. E. Marras S. Anderson E. J. Lehmkuhl O. Mukherjee A. Cade D. E. et al . (2020). Remoras Pick Where They Stick on Blue Whales. J. Exp. Bio.223 (20), jeb226654. doi: 10.1242/jeb.226654

  • 251

    Follet W. I. Dempster L. J. (1960). First Records of the Echeneidid Fish Remilegia Australis (Bennett) From California, With Meristic Data. Proc. Calif. Acad. Sci.31, 169184. doi: 10.2307/1440203

  • 252

    Fonseca G. Decraemer W. (2008). State of the Art of the Free-Living Marine Monhysteridae (Nematoda). J. Mar. Biolog. Assoc. U.K.88 (7), 13711390. doi: 10.1017/S0025315408001719

  • 253

    Foote A. D. Vilstrup J. T. de Stephanis R. Verborgh P. Able Nielsen S. C. Deaville R. et al . (2011). Genetic Differentiation Among North Atlantic Killer Whale Populations. Mol. Ecol.20, 629641. doi: 10.1111/j.1365-294X.2010.04957.x

  • 254

    Fordyce R. E. Mattlin R. H. Wilson G. J. (1979). Stranding of a Cuvier's Beaked Whale, Ziphius cavirostris Cuvier 1823, at New Brighton, New Zealand. Mäuri orä7, 7382.

  • 255

    Foskolos I. Provata M. T. Frantzis A. (2017). First Record of Conchoderma auritum (Cirripedia: Lepadidae) on Ziphius cavirostris (Cetacea: Ziphiidae) in Greece. In Ann. Ser. Hist. Nat.27, 2934. doi: 10.19233/ASHN.2017.04

  • 256

    Foster B. A. Willan R. C. (1979). Foreign Barnacles Transported to New Zealand on an Oil Platform. N. Z. J. Mar. Freshw. Res.13 (1), 143149. doi: 10.1080/00288330.1979.9515788

  • 257

    Fraija-Fernández N. Fernández M. Gozalbes P. Revuelta O. Raga J. A. Aznar F. J. (2017). Living in a Harsh Habitat: Epidemiology of the Whale Louse, Syncyamus Aequus (Cyamidae), Infecting Striped Dolphins in the Western Mediterranean. J. Zool.303 (3), 199206. doi: 10.1111/jzo.12482

  • 258

    Fraija-Fernández N. Hernández-Hortelano A. Ahuir-Baraja A. E. Raga J. A. Aznar F. J. (2018). Taxonomic Status and Epidemiology of the Mesoparasitic Copepod Pennella Balaenoptera in Cetaceans From the Western Mediterranean. Dis. Aquat. Org.128 (3), 249258. doi: 10.3354/dao03226

  • 259

    Franklin T. Franklin W. Brooks L. Harrison P. Burns D. Holmberg J. et al . (2020). Photo-Identification of Individual Southern Hemisphere Humpback Whales (Megaptera novaeangliae) Using All Available Natural Marks: Managing the Potential for Misidentification. J. Cetacean Res. Manage.21 (1), 7183. doi: 10.47536/jcrm.v21i1.186

  • 260

    Fransen C. H. J. M. Smeenk C. (1991). Whale-Lice (Amphipoda: Cyamidae) Recorded From The Netherlands. Zool. Med.65, 393405.

  • 261

    Frantzis A. (2018). A Long and Deep Step in Range Expansion of an Alien Marine Mammal in the Mediterranean: First Record of the Indian Ocean Humpback Dolphin Sousa Plumbea (G. Cuvier 1829) in the Greek Seas. BioInvasions Rec.7 (1), 8387. doi: 10.3391/bir.2018.7.1.13

  • 262

    Fraser C. I. Nikula R. Waters J. M. (2011). Oceanic Rafting by a Coastal Community. Proc. R. Soc B Biol. Sci.278, 649655. doi: 10.1098/rspb.2010.1117

  • 263

    Frazier J. Margaritoulis D. (1990). The Occurrence of the Barnacle, Chelonibia Patula (Ranzani 1818), on an Inanimate Substratum (Cirripedia, Thoracica). Crustaceana59, 213218. doi: 10.1163/156854090X00688

  • 264

    Freeman M. A. Ogawa H. (2010). Variation in the Small Subunit Ribosomal DNA Confirms That Udonella (Monogenea: Udonellidae) is a Species-Rich Group. Int. J. Parasitol.40, 244264. doi: 10.1016/j.ijpara.2009.08.006

  • 265

    Frick M. G. Pfaller J. B. (2013). “Sea Turtle Epibiosis,” in The Biology of Sea Turtles. Eds. WynekenJ.LohmannK. J.MusickJ. A. (Boca Raton, FL: CRC Press), 399426.

  • 266

    Frick M. G. Zardus J. D. Ross A. Senko J. Montano-Valdez D. Bucio-Pacheco M. et al . (2011). Novel Records and Observations of the Barnacle Stephanolepas Muricata (Cirripedia: Balanomorpha: Coronuloidea); Including a Case for Chemical Mediation in Turtle and Whale Barnacles. J. Nat. Hist.45 (11-12), 629640. doi: 10.1080/00222933.2010.534563

  • 267

    Gagnon J. Torgersen J. (2020) Canadian Museum of Nature Crustacea Collection. Available at: https://www.gbif.org/occurrence/1804299388 (Accessed June 20, 2021).

  • 268

    Gallo-Reynoso J. P. Figueroa-Carranza A. L. (1992). A Cookiecutter Shark Wound on a Guadalupe Fur Seal Male. Mar. Mamm. Sci.8 (4), 428430. doi: 10.1111/j.1748-7692.1992.tb00060.x

  • 269

    Gambell R. (1964). A Pygmy Blue Whale at Durban. Norsk Hvalfangst-Tid.53 (3​), 6668.

  • 270

    García-Godos I. (1992). Captura Estacional De Cetáceos Menores En La Caleta De Ancón (Lima: Memoria X Congreso Nacional de Biología).

  • 271

    Gasparini J. L. Sazima I. (1996). A Stranded Melonheaded Whale, Peponocephala Electra, in Southeastern Brazil, With Comments on Wounds From the Cookiecutter Shark, Isistius Brasiliensis. Mar. Mamm. Sci.12, 308312. doi: 10.1111/j.1748-7692.1996.tb00582.x

  • 272

    Gauthier H. (1938). Observations Sur Un Cetacé Du Genre Ziphius Mort Au Large D'alger. Bull. Stn. Aquic. Pêche Castiglione1, 181204.

  • 273

    Geraci J. R. St. Aubin D. J. (1987). Effects of Parasites on Marine Mammals. Int. J. Parasitol.17 (2), 407414. doi: 10.1016/0020-7519(87)90116-0

  • 274

    Gibson D. I. Harris E. A. Bray R. A. Jepson P. D. Kuiken T. Baker J. R. et al . (1998). A Survey of the Helminth Parasites of Cetaceans Stranded on the Coast of England and Wales During the Period 1990-1994. J. Zool.244 (4), 563574. doi: 10.1111/j.1469-7998.1998.tb00061.x

  • 275

    Gill A. Fairbairns B. Fairbairns R. (2000). Photo-Identification of the Minke Whale (Balaenoptera Acutorostrata) Around the Isle of Mull, Scotland. Report to the Hebridean Whale and Dolphin Trust88 pp.

  • 276

    Gittings S. R. Dennis G. D. Harry H. W. (1986). Annotated Guide to the Barnacles of the Northern Gulf of Mexico. Biol. Oceanogr.402, 136.

  • 277

    Gomerčić H. Gomerčić M. D. Gomerčić T. Lucić H. Dalebout M. Galov A. et al . (2006). Biological Aspects of Cuvier’s Beaked Whales (Ziphius cavirostris) Recorded in the Croatian Part of the Adriatic Sea. Eur. J. Wildl. Res.52, 182187. doi: 10.1007/s10344-006-0032-8

  • 278

    Gomes T. Quiazon K. Kotake M. Fujise Y. Ohizumi H. Itoh N. et al . (2021). Anisakis Spp. In Toothed and Baleen Whales From Japanese Waters With Notes on Their Potential Role as Biological Tags. Parasitol. Int.80, 102228. doi: 10.1016/j.parint.2020.102228

  • 279

    Gómez-Hernández I. Serrano A. Becerril-Gómez C. Basañez-Muñoz A. Naval-Ávila C. (2020). Prevalencia Y Abundancia Relativa De Balanos Xenobalanus globicipitis Presentes En Poblaciones De Delfín Nariz De Botella Tursiops Truncatus En El Golfo De México Sur. Rev. Biol. Mar. Oceanogr.55 (2), 172176. doi: 10.22370/rbmo.2020.55.2.2503

  • 280

    González J. A. Martín L. Herrera R. González-Lorenzo G. Espino F. Barquín-Diez J. et al . (2012). Cirripedia of the Canary Islands: Distribution and Ecological Notes. J. Mar. Biolog. Assoc. U.K.92 (1), 129141. doi: 10.1017/S002531541100066X

  • 281

    Gosse P. H. (1855). Notes on Some New or Little-Known Marine Animals. Ann. Mag. Nat. Hist.16 (91), 2736. doi: 10.1080/037454809495473

  • 282

    Gould E. A. Higgs S. (2008). Impact of Climate Change and Other Factors on Emerging Arbovirus Diseases. Trans. R. Soc Trop. Med. Hyg.103 (2), 109121. doi: 10.1016/j.trstmh.2008.07.025

  • 283

    Govindarajan A. F. Boero F. Halanych K. M. (2006). Phylogenetic Analysis With Multiple Markers Indicates Repeated Loss of the Adult Medusa Stage in Campanulariidae (Hydrozoa, Cnidaria). Mol. Phylogenet. Evol.38 (3), 820834. doi: 10.1016/j.ympev.2005.11.012

  • 284

    Gray K. N. McDowell J. R. Collette B. B. Graves J. E. (2009). A Molecular Phylogeny of the Remoras and Their Relatives. Bull. Mar. Sci.84 (2), 183197.

  • 285

    Greenwood A. G. Taylor D. C. Gauckler A. (1979). Odontocete Parasites-Some New Host Records. Aquat. Mamm.7, 2325.

  • 286

    Groch K. R. Diaz-Delgado J. Marcondes M. C. Colosio A. C. Santos-Neto E. B. Carvalho V. L. et al . (2018). Pathology and Causes of Death in Stranded Humpback Whales (Megaptera novaeangliae) From Brazil. PloS One13 (5), e0194872. doi: 10.1371/journal.pone.0194872

  • 287

    Groch K. Jerdy H. Marcondes M. Barbosa L. Ramos H. Pavanelli L. et al . (2020). Cetacean Morbillivirus Infection in a Killer Whale (Orcinus Orca) From Brazil. J. Comp. Pathol.181, 2632. doi: 10.1016/j.jcpa.2020.09.012

  • 288

    Gruvel J. A. (1903). Revision Des Cirrhipedes Appartenant a La Collection Du Musee D'histoire Naturelle. Nouv. Arch. Des. Musees Ser.45, 95170.

  • 289

    Gruvel J. A. (1905). Monographie Des Cirrhipèdes Ou Thécostracés (Paris: Masson et cie).

  • 290

    Gruvel J. A. (1911). Expédition Antarctique Française Du Pourquoi-Pas Dirigée Par M. Le Dr. J.-B. Charcot, (1908-1910). Liste de Cirrhipèdes. Bull. Mus. Nat. Hist. Nat.5, 292.

  • 291

    Gruvel J. A. (1912). Mission Gruvel Sur La Côte Occidentale D’afrique, (1909–1910) Et Collection Du Museum D’histoire Naturelle. Les Cirripedes Vol. 18 (Paris: Bulletin du Museum National d’Histoire Naturelle), 344350.

  • 292

    Gruvel J. A. (1920). “Cirrhipedes Provenant Des Campagnes Scientifiques De S.A.S. Le Prince De Monaco, (1885– 1913),” in Résultas Des Campagnes Scientifiques Accomplies Sur Son Yacht Par Albert Ler (Monaco: Prince Souverain de Monaco), 188.

  • 293

    Guerrero-Ruiz M. Urbán J. R. (2000). First Report of Remoras on Two Killer Whales (Orcinus Orca) in the Gulf of California, Mexico. Aquat. Mamm.26 (2), 148150.

  • 294

    Guiler E. R. (1956). Supplement to a List of the Crustacea of Tasmania. Records Queen Victoria Museum5, 18.

  • 295

    Høeg J. T. Lagersson N. C. Glenner H. (2003). “The Complete Cypris Larva and its Significance in Thecostracan Phylogeny,” in Evolutionary and Developmental Biology of Crustacea. Ed. ScholtzG. (Lisse, Abingdon, Exton (PA), Tokyo: A. A. Balkema Publishers), 197215.

  • 296

    Haelters J. (2001). De Walvisluis Isocyamus delphinii (Guerin-Meneville 1837) Aangetroffen Op Een Witsnuitdolfijn Lagenorhynchus Albirostris (Gray 1846) En Massaal Parasiterend Op Een Bruinvis Phocoena Phocoena (L. 1758). Strandvlo21 (3), 107112.

  • 297

    Hai-yan Y. Xin-zheng L. (2002). A New Species of the Genus Nerocila (Isopoda: Cymothoidae) From the East China Sea. Chin. J. Oceanol. Limnol.20 (3), 266269. doi: 10.1007/BF02848857

  • 298

    Hale H. M. (1926). Review of Australian Isopods of Cymothoid Group, Part 1. Trans. R. Soc South Aust.49, 128185.

  • 299

    Hallas S. (1868). Optegnelser Om Nogle Paa Et Hvalfangst-Tog I Havet Omkring Island Iagttagne Hvaler. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening1, 150177.

  • 300

    Hamilton J. E. (1914). Report of the Committee Appointed to Investigate Biological Problems Incidental to Belmullet Whaling Station. Br. Assoc. Adv. Sci., 125161.

  • 301

    Hamre L. A. Eichner C. Caipang C. M. A. Dalvin S. T. Bron J. E. Nilsen F. et al . (2013). The Salmon Louse Lepeophtheirus Salmonis (Copepoda: Caligidae) Life Cycle Has Only Two Chalimus Stages. PloS One8 (9), e73539. doi: 10.1371/journal.pone.0073539

  • 302

    Haney T. A. (1999). Phylogenetic Analysis of the Whale-Lice (Amphipoda: Cyamidae). [Master’s Thesis] (South Carolina: University of Charleston).

  • 303

    Haney T. A. De Almeida A. O. Reis M. S. S. (2004). A New Species of Cyamid (Crustacea: Amphipoda) From a Stranded Cetacean in Southern Bahia, Brazil. Bull. Mar. Sci.75 (3), 409421.

  • 304

    Harper D. E. (1995). Fouling of towed seismic streamers off central Africa by the lepadomorph barnacle Conchoderma virgatum. Crustaceana68(6), 779781. doi: 10.1163/156854095x00287

  • 305

    Harper D. E. Jr. . Fouling of Towed Seismic Streamers Off Central Africa by the Lepadomorph Barnacle Conchoderma Virgatum. Crustaceana (2001) 68, 779781.

  • 306

    Hart T. J. (1935). On the Diatoms of the Skin Film of Whales, and Their Possible Bearing on Problems of Whale Movements (Cambridge: Cambridge University Press).

  • 307

    Hastings R. W. (1972). The Barnacle, Conchoderma Virgatum (Spengler), in Association With the Isopod, Nerocila Acuminata Schioedte & Meinert, and the Orange Filefish, Alutera Schoepfi (Walbaum). Crustaceana22 (3), 274278. doi: 10.1163/156854072X00552

  • 308

    Hayashi R. (2012). Atlas of the Barnacles on Marine Vertebrates in Japanese Waters Including Taxonomic Review of Superfamily Coronuloidea (Cirripedia: Thoracica). J. Mar. Biolog. Assoc. U.K.92, 107127. doi: 10.1017/S0025315411000737

  • 309

    Hayashi R. Chan B. Simon-Blecher N. Watanabe H. Guy-Haim T. Yonezawa T. et al . (2013). Phylogenetic Position and Evolutionary History of the Turtle and Whale Barnacles (Cirripedia: Balanomorpha: Coronuloidea). Mol. Phyl. Evol.67 (1), 914. doi: 10.1016/j.ympev.2012.12.018

  • 310

    Heckmann R. A. Jensen L. A. Warnock R. G. Coleman B. (1987). Parasites of the Bowhead Whale, Balaena Mysticetus. Great Basin Nat.47 (3), 355372.

  • 311

    Heldt J. H. (1950). Note Au Sujet De Xenobalanus globicipitis Steenstrup Sur Balaenoptera Borealis Lesson En Méditerranée. Bull. la Société d’Histoire Naturelle Tunisie3, 2528.

  • 312

    Hemmingsen W. MacKenzie K. Sagerup K. Remen M. Bloch-Hansen K. Dagbjartarson Imsland A. K. (2020). Caligus elongatus and Other Sea Lice of the Genus Caligus as Parasites of Farmed Salmonids: A Review. Aquaculture522, 735160. doi: 10.1016/j.aquaculture.2020.735160

  • 313

    Hermosilla C. Silva L. M. Prieto R. Kleinertz S. Taubert A. Silva M. A. (2015). Endo-And Ectoparasites of Large Whales (Cetartiodactyla: Balaenopteridae, Physeteridae): Overcoming Difficulties in Obtaining Appropriate Samples by non-and Minimally-Invasive Methods. Int. J. Parasitol.: Parasites Wildl.4 (3), 414420. doi: 10.1016/j.ijppaw.2015.11.002

  • 314

    Herr H. Burkhardt-Holm P. Heyer K. Siebert U. Selling J. (2020). Injuries, Malformations, and Epidermal Conditions in Cetaceans of the Strait of Gibraltar. Aquat. Mamm.46 (2), 215235. doi: 10.1578/AM.46.2.2020.215

  • 315

    Hess J. E. Smith J. J. Timoshevskaya N. Baker C. Caudill C. C. Graves D. et al . (2020). Genomic Islands of Divergence Infer a Phenotypic Landscape in Pacific Lamprey. Mol. Ecol.29 (20), 38413856. doi: 10.1111/mec.15605

  • 316

    Heyning J. E. Dahlheim M. E. (1988). Orcinus Orca. Mamma. Species304, 19. doi: 10.2307/3504225

  • 317

    Hicks G. F. R. (1985). “Meiofauna Associated With Rocky Shore Algae” in The Ecology of Rocky Coasts. Eds. MooreP. G.SeedR. (London: Hodder and Stoughton), 3656.

  • 318

    Hinojosa I. Boltana S. Lancellotti D. Macaya E. Ugalde P. Valdivia N. et al . (2006). Geographic Distribution and Description of Four Pelagic Barnacles Along the South East Pacific Coast of Chile-A Zoogeographical Approximation. Rev. Chil. Hist. Natural79 (1), 1327. doi: 10.4067/S0716-078X2006000100002

  • 319

    Hinton M. A. C. (1925). Reports on Papers Left by the Late Major G. E. H. Barrett-Hamilton Relating to the Whales of South Georgia (London: Crown Agents for the Colonies).

  • 320

    Hiro F. (1935). The Fauna of Akkeshi Bay. II. Cirripedia. J. Faculty Sci. Hokkaido University.4, 213229.

  • 321

    Hiro F. (1938). Cyamus Elongatus N. Sp., a New Whale-Lice From Japan. Annot. Zool. Jap.17 (1), 7177.

  • 322

    Hiruki L. M. Gilmartin W. G. Becker B. L. Stirling I. (1993). Wounding in Hawaiian Monk Seals (Monachus Schauinslandi). Can. J. Zool.71 (3), 458468. doi: 10.1139/z93-066

  • 323

    Hoek P. P. C. (1883). Report on the Cirripedia Collected by H.M.S. Challenger During the Years 1873–1876. Report of the Scientific Results From the Exploratory Voyages of H.M.S. Challenger Zoology8, 1169. doi: 10.5962/bhl.title.12873

  • 324

    Hogans W. E. (1987). Morphological Variation in Pennella Balaenoptera and P. Filosa (Copepoda: Pennellidae) With a Review of the Genus Pennella Oken 1816 Parasitic on Cetacea. Bull. Mar. Sci.40 (3), 442453.

  • 325

    Hogans W. E. (2017). Review of Pennella Oken 1816 (Copepoda: Pennellidae) With a Description of Pennella Benzi Sp. Nov., a Parasite of Escolar, Lepidocybium Flavobrunneum (Pisces) in the Northwest Atlantic Ocean. Zootaxa4244 (1), 138. doi: 10.11646/zootaxa.4244.1.1

  • 326

    Holcík J. Delic A. Kucinic M. Bukvic V. Vater M. . Distribution and Morphology of the Sea Lamprey from the Balkan Coast of the Adriatic Sea. J. Fish Biol. (2004) 64(2), 514527.

  • 327

    Holmes M. Franco J. M. F. (2010). Goose Barnacle Conchoderma auritum (L.) Attached to Tooth of Stranded Sowerby’s Beaked Whale Mesoplodon Bidens Sowerby. Ir. Nat.' J.31 (2), 136.

  • 328

    Holthuis L. B. Fransen C. H. (2004). Interesting Records of Whale Epizoic Crustaceans From the Dutch North Sea Coast (Cirripedia, Amphipoda). Nederlandse Faunistische Mededelingen21, 1116.

  • 329

    Holthuis L. B. Smeenk C. Laarman F. J. (1998). The Find of a Whale Barnacle, Cetopirus Complanatus (Mörch 1853), in 10th Century Deposits in the Netherlands. Zool. Verh.323 (27), 349363.

  • 330

    Hopla C. Durden L. Keirans J. (1994). Ectoparasites and Classification. Rev. Sci. Tech.13, 9851034. doi: 10.20506/rst.13.4.815

  • 331

    Horn M. H. Teal J. M. Backus R. H. (1970). Petroleum Lumps on the Surface of the Sea. Science168, 245246. doi: 10.1126/science.168.3928.245

  • 332

    Huang Z. Liu W. Zheng C. LI C. Wang J. Jefferson T. A. (2000). Finless Porpoises in Southern Coastal Waters of Fujian, China. Acta Oceanologica Sin.22, 114119. [In Chinese, English summary].

  • 333

    Humes A. G. (1964). Harpacticus Pulex, a New Species of Copepod From the Skin of a Porpoise and a Manatee in Florida. Bull. Mar. Sci.14 (4), 517528.

  • 334

    Hurley D. E. (1952). Studies on the New Zealand Amphipodan Fauna. I. The Family Cyamidae: The Whale-Louse Paracyamus Boopis. Trans. R. Soc N. Z. Zool.80, 6368.

  • 335

    Hurley D. E. Mohr J. L. (1957). On Whale-Lice (Amphipoda: Cyamidae) From the California Gray Whale E. Glaucus. Parasitology43 (3), 352357. doi: 10.2307/3274363

  • 336

    Hustedt F. (1952). Diatomeen Aus Der Lebensgemeinschaft Der Buckelwals (Megaptera Nodosa Bonn.). Archiv für Hydrobiologie46 (2), 286298.

  • 337

    Huys R. Llewellyn-Hughes J. Olson P. D. Nagasawa K. (2006). Small Subunit rDNA and Bayesian Inference Reveal Pectenophilus Ornatus (Copepoda Incertae Sedis) as Highly Transformed Mytilicolidae, and Support Assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida). Biol. J. Linn. Soc Lond.87 (3), 403425. doi: 10.1111/j.1095-8312.2005.00579.x

  • 338

    Ichihara T. (1966). “The Pigmy Blue Whale, Balaenoptera Musculus Brevicauda, a New Subspecies From the Antarctic” in Whales, Dolphins and Porpoises. Ed. NorrisK. S. (Berkeley and LA: University of California Press), 79113. doi: 10.1525/9780520321373-008

  • 339

    Ichihara T. (1981). “Review of Pygmy Blue Whale Stock in the Antarctic”. Mammals Seas (FAO)3, 211218.

  • 340

    IJsseldijk L. L. Van Neer A. Deaville R. Begeman L. van de Bildt M. van den Brand J. M. et al . (2018). Beached Bachelors: An Extensive Study on the Largest Recorded Sperm Whale Physeter Macrocephalus Mortality Event in the North Sea. PloS One13 (8), e0201221. doi: 10.1371/journal.pone.0201221

  • 341

    Il'in I. I. Kuznetsova L. A. Starostin I. V. (1978). Oceanic Fouling in the Equatorial Atlantic. Oceanology18, 597599.

  • 342

    Inatsuchi A. Yamato S. Yusa Y. (2010). Effects of Temperature and Food Availability on Growth and Reproduction in the Neustonic Pedunculate Barnacle. Lepas anserifera. Mar. Biol.157, 899905. doi: 10.1007/s00227-009-1373-0

  • 343

    iNaturalist users, iNaturalist (2021) Inaturalist Research-Grade Observations (iNaturalist.org). Available at: https://www.gbif.org/occurrence/1880668572 (Accessed May 20, 2021).

  • 344

    Insacco G. Buscaino G. Buffa G. Cavallaro M. Crisafi E. Grasso R. et al . (2014). Il Patrimonio Delle Raccolte Cetologiche Museali Della Sicilia. Museologia Scientifica Memorie12, 391405. [In Italian].

  • 345

    International Whaling Comission, IWC (2021) Total Catches (International Whaling Comission). Available at: https://iwc.int/total-catches (Accessed May 3, 2021).

  • 346

    Ishi S. (1915). A Cyamid Obtained in the Province Awa Vol. 27 (Tokio: Dobutsugaku Zasshi), 157159. [In Japanese].

  • 347

    Itô T. (1976). Descriptions and Records of Marine Harpacticoid Copepods From Hokkaido. J. Fac. Sci., Hokkaido Univ.20 (3), 448567.

  • 348

    Ito A. Aoki M. Yahata K. Wada H. (2011). Complicated Evolution of the Caprellid (Crustacea: Malacostraca: Peracarida: Amphipoda) Body Plan, Reacquisition or Multiple Losses of the Thoracic Limbs and Pleons. Dev. Genes Evol.221 (3), 133140. doi: 10.1007/s00427-011-0365-5

  • 349

    Ivashin M. V. (1965). Obrastaniya I Ektoparasity U Gorbatykh KitovV kn.Morskie mlekopitayuschie.. 8086.

  • 350

    Ivashin M. V. (1965). Vneshnie parazity malykh polosatikov Antarktiki [External parasites on lesser rorquals in the Antarctic]. Kiev: Naukova Dumka, 125127. [In Russian].

  • 351

    Ivashin M. V. Golubovsky Y. P. (1978). On the Cause of Appereance of White Scars on the Body of Whales. Rep. Int. Whal. Commn.28, 199.

  • 352

    Iwasa M. (1934). Two Species of Whale-Lice (Amphipoda, Cyamidae) Parasitic on a Right Whale. Fac. Sci. Hokkaido Imperial Univ. Ser. 6 Zool.3, 3340.

  • 353

    Iwasa-Arai T. Carvalho V. L. Serejo C. S. (2017b). Updates on Cyamidae (Crustacea: Amphipoda): Redescriptions of Cyamus Monodontis Lütken 1870 and Cyamus Nodosus Lütken 1861, a New Species of Isocyamus, and New Host Records for Syncyamus Ilheusensis Haney, De Almeida and Reis 2004. J. Nat. Hist.51 (37-38), 22252245. doi: 10.1080/00222933.2017.1365965

  • 354

    Iwasa-Arai T. da Silva Santana F. Barbosa C. B. Werneck M. R. (2021). One Crawled Over the Dolphin's Back: Unusual Record of the Whale Louse Cyamus Boopis (Crustacea: Amphipoda: Cyamidae) on the Bottlenose Dolphin (Tursiops Truncatus). Zoologischer Anzeiger295, 117119. doi: 10.1016/j.jcz.2021.10.002

  • 355

    Iwasa-Arai T. Santarosa Freire A. Castaldo Colosio A. Serejo C. S. (2016). Ontogenetic Development and Redescription of the Whale Louse Cyamus Boopis Lütken 1870 (Crustacea: Amphipoda: Cyamidae), Ectoparasite of Humpback Whale Megaptera novaeangliae (Mammalia: Cetacea: Balaenopteridae). Mar. Biodiv.47 (3), 929939. doi: 10.1007/s12526-016-0532-z

  • 356

    Iwasa-Arai T. Serejo C. S. (2018). Phylogenetic Analysis of the Family Cyamidae (Crustacea: Amphipoda): A Review Based on Morphological Characters. Zool. J. Linn. Soc184 (1), 6694. doi: 10.1093/zoolinnean/zlx101

  • 357

    Iwasa-Arai T. Serejo C. S. Siciliano S. Ott P. H. Freire A. S. Elwen S. et al . (2018). The Host-Specific Whale Louse (Cyamus Boopis) as a Potential Tool for Interpreting Humpback Whale (Megaptera novaeangliae) Migratory Routes. J. Exp. Mar. Bio. Ecol.505, 4551. doi: 10.1016/j.jembe.2018.05.001

  • 358

    Iwasa-Arai T. Siciliano S. Serejo C. Rodríguez-Rey G. (2017a). Life History Told by a Whale-Louse: A Possible Interaction of a Southern Right Whale Eubalaena Australis Calf With Humpback Whales Megaptera novaeangliae. Helgoland Marine Res.71 (1). doi: 10.1186/s10152-017-0486-y

  • 359

    Japha A. (1910). Weitere Beitrage Zur Kenntnis Der Walhaut. Zool. JahrbuchSuppl. 12, 711718.

  • 360

    Jauniaux T. Petitjean D. Brenez C. Borrens M. Brosens L. Haelters J. et al . (2002). Post-Mortem Findings and Causes of Death of Harbour Porpoises (Phocoena Phocoena) Stranded From 1990 to 2000 Along the Coastlines of Belgium and Northern France. J. Comp. Path.126 (4), 243253. doi: 10.1053/jcpa.2001.0547

  • 361

    Jefferson T. A. Odell D. K. Prunier K. T. (1995). Notes on the Biology of the Clymene Dolphin (Stenella Clymene) in the Northern Gulf of Mexico. Mar. Mamm. Sci.11 (4), 564573. doi: 10.1111/j.1748-7692.1995.tb00679.x

  • 362

    Jerde C. W. (1967). On the Distribution of Portunus (Achelous) Affinis and Euphylax Dovii (Decapoda Brachyura, Portunidae) in the Eastern Tropical Pacific. Crustaceana13, 1122. doi: 10.1163/156854067X00026

  • 363

    Jiménez I. C. A. Reina L. M. C. Kintz J. R. C. (2011). Crustáceos Ectoparásitos Y Epibiontes De Ballenas Jorobadas, Megaptera novaeangliae (Cetacea: Balaenopteridae) En El Pacífico Colombiano Vol. 3 (San José:Cuadernos de Investigación UNED), 177185. doi: 10.22458/urj.v3i2.146

  • 364

    Johnson N. S. Buchinger T. J. Kintz J. R. C. (2015). “Reproductive ecology of lampreys” in Lampreys: Biology, Conservation, and Control, ed. DockerM. F. (New York: Springer), 265303

  • 365

    Jones D. S. (2010). “The Littoral and Shallow-Water Barnacles (Crustacea: Cirripedia) of South-Eastern Queensland,” in Proceedings of the Thirteenth International Marine Biological Workshop, The Marine Fauna and Flora of Moreton Bay, Queensland, vol. 54 . Eds. DavieP. J. F.PhillipsJ. A. (Memoirs of the Queensland Museum. Nature), 199233.

  • 366

    Joon S. S. Young C. C. (1993). Eight Harpactiocoid Species of Harpacticidae (Copepoda, Harpacticoida) From Korea. Anim. Syst. Evol. Divers.9 (2), 203220.

  • 367

    Joseph B. E. Cornell L. H. Osborn K. G. (1986). Occurrence of Ectoparasitic Barnacles on Northern Elephant Seals (Mirounga Angustirostris). J. Mammal.67 (4), 772772. doi: 10.2307/1381148

  • 368

    Kabata Z. (1974). Mouth and Mode of Feeding of Caligidae (Copepoda), Parasites of Fishes, as Determined by Light and Scanning Electron Microscopy. J. Fish. Res. Board Can.31, 15831588. doi: 10.1139/f74-199

  • 369

    Kabata Z. (1979). Parasitic Copepoda of British Fishes (London: The Ray Society).

  • 370

    Kakuwa Z. Kawakami T. Iguchi K. (1953). Biological Investigation on the Whales Caught by the Japanese Antarctic Whaling Fleets in the 1951-52 Season. Sci. Rep. Whales Res. Inst.8, 147213.

  • 371

    Kaliszewska Z. A. Seger J. O. N. Rowntree V. J. Barco S. G. Benegas R. Best P. et al . (2005). Population Histories of Right Whales (Cetacea: Eubalaena) Inferred From Mitochondrial Sequence Diversities and Divergences of Their Whale Lice (Amphipoda: Cyamus). Mol. Ecol.14 (11), 34393456. doi: 10.1111/j.1365-294X.2005.02664.x

  • 372

    Kamiya K. Yamashita K. Yanagawa T. Kawabata T. Watanabe K. (2012). Cypris Larvae (Cirripedia: Balanomorpha) Display Auto-Fluorescence in Nearly Species-Specific Patterns. Zool. Sci.29 (4), 247253. doi: 10.2108/zsj.29.247

  • 373

    Kane E. A. Olson P. A. Gerodette T. Fiedler P. C. (2008). Prevalence of the Commensal Barnacle Xenobalanus globicipitis on Cetacean Species in the Eastern Tropical Pacific Ocean, and Review of Global Occurrence. Fish. Bull.106, 395404.

  • 374

    Karaa S. Insacco G. Bradai M. N. Scaravelli D. (2011). Records of Xenobalanus globicipitis on Balaenoptera Physalus and Stenella Coeruleoalba in Tunisian and Sicilian Waters. Natura Rerum.1, 5559.

  • 375

    Karenina K. Giljov A. Ivkovich T. Malashichev Y. (2016). Evidence for the Perceptual Origin of Right-Sided Feeding Biases in Cetaceans. Anim. Cogn.19 (1), 239243. doi: 10.1007/s10071-015-0899-4

  • 376

    Karuppiah S. Subramanian A. Obbard J. P. (2004). The Barnacle, Xenobalanus globicipitis (Cirripedia, Coronulidae), Attached to the Bottle-Nosed Dolphin, Tursiops Truncatus (Mammalia, Cetacea) on the Southeastern Coast of India. Crustaceana77, 879882. doi: 10.1163/156854004774248753

  • 377

    Kasuya T. Rice D. W. (1970). Notes of Baleen Plates and on Arrangement of Parasitic Barnacles of Gray Whale. Sci. Rep. Whale Res. Inst.22, 3943.

  • 378

    Kautek G. Van Bressem M. F. Ritter F. (2008). External Body Conditions in Cetaceans From La Gomera, Canary Islands, Spain. J. Marine Anim. Their Ecol.11 (2), 417.

  • 379

    Kawamura A. (1969). Some Consideration on the Stock Unit of Sei Whales by the Aspect of Ectoparasitic Organisms on the Body. Bull. Jap. Soc Fish. Oceanogr.14, 3843. [In Japanese].

  • 380

    Keable S. J. (2006). Taxonomic Revision of Natatolana (Crustacea: Isopoda: Cirolanidae). Rec. Aust. Mus.58(2),133244. doi: 10.3853/j.0067-1975.58.2006.1469

  • 381

    Kenney R. D. (2009). “Right Whales: Eubalaena Glacialis, E. Japonica, and E. Australis,” in Encyclopedia of Marine Mammals. Eds. PerrinW.WürsigB.ThewissenJ. (San Diego: Academic Press), 962972. doi: 10.1016/B978-0-12-373553-9.00220-0

  • 382

    Khodami S. McArthur J. V. Blanco-Bercial L. Martínez Arbizu P. (2017). Molecular Phylogeny and Revision of Copepod Orders (Crustacea: Copepoda). Sci. Rep.7 (1), 9164. doi: 10.1038/s41598-017-06656-4

  • 383

    Killingley J. (1980). Migrations of California Gray Whales Tracked by Oxygen-18 Variations in Their Epizoic Barnacles. Scie207, 759760. doi: 10.1126/science.207.4432.759

  • 384

    Kim H. K. Chan B. K. K. Kang C. Kim H. W. Kim W. (2020). How do Whale Barnacles Live on Their Hosts? Functional Morphology and Mating-Group Sizes of Coronula Diadema (Linnaeus 1767) and Conchoderma auritum (Linnaeus 1767) (Cirripedia: Thoracicalcarea). J. Crust. Biol.40 (6), 808824. doi: 10.1093/jcbiol/ruaa075

  • 385

    Kim M. J. Sohn H. (2016). Rescue, Rehabilitation and Release of Finless Porpoise (Neophocaena Asiaeorientalis) in Korea. J. Fish. Mar. Sci. Educ.28 (3), 861871. doi: 10.13000/JFMSE.2016.28.3.861

  • 386

    Kim I. H. Suárez-Morales E. Márquez-Rojas B. (2019). Caligid Copepods (Copepoda: Siphonostomatoida: Caligidae) as Zooplankters Off the Venezuelan Coast, Western Caribbean Sea. Thalassas35, 607618. doi: 10.1007/s41208-019-00130-w

  • 387

    Klinkhart E. G. (1966). The bBeluga Whale in Alaska. Juneau: Alaska Dep. Fish. Game, Fed. Aid Wildl. Restor. Proj. Rep.7 W–6–R and W–14–R.

  • 388

    Kobayashi N. Tokutake K. Yoshida H. Okabe H. Miyamoto K. Ito H. et al . (2021). The First Stranding Record of Longman’s Beaked Whale (Indopacetus Pacificus) in Okinawa, Japan. Aquat. Mamm.47 (2), 153174. doi: 10.1578/AM.47.2.2021.153

  • 389

    Koch W. R. (2002). Revisão taxonômica do gênero Homodiaetus (Teleostei, Siluriformes, Trichomycteridae). Iheringia, Série Zoologia, Porto Alegre92, 3346.

  • 390

    Koren J. Danielssen D. C. (1877). En Ny Art Af Slaegten Pennella. (A New Species of the Genus Penella). Fauna Littoralis Norvegiae3, 157163.

  • 391

    Kottelat M. Freyhof J. (2007). Handbook of European Freshwater Fishes (Cornol: Publications Kottelat).

  • 392

    Krøyer H. (1843). Om Cyamus Ceti (Med Et Par Bemaerkninger, Betraeffende Den Mulige Anvendelse Af De Paa Hvalerne Levende Smaa Dyr Ved Hvalarternes Adskillelse). Naturhistorisk Tidsskrift, 474489.

  • 393

    Krefft G. (1953). Ichthyologische Mitteilungen Aus Dem Institut Für Seefischerei Der Bundesanstalt Für Fischerei. Zool. Anz.150, 275282.

  • 394

    Kubota S. (1999). Fauna of Obelia (Cnidaria, Hydrozoa) in Japanese Waters, With Special Reference to Life Cycle of Obelia Dichotoma (L. 1758). Zoosystematica Rossica1, 6776.

  • 395

    Kuramochi T. Araki J. Uchida Moriyama N. Takeda Y. Hayashi N. et al . (2000). “Summary of Parasite and Epizoit Investigations During JARPN Surveys 1994-1999, With Reference to Stock Structure Analysis for the Western North Pacific Minke Whales,” in IWC Scientific Committee Workshop to Review the Japanese Whaling Programme Under Special Permit for North Pacific Minke Whales (JARPN). SC/F2K/J19

  • 396

    Kuramochi T. Machida M. Araki J. Uchida A. Kishiro T. Nagasawa K. (1996). Minke Whales (Balaenoptera Acutorostrata) are One of the Major Final Hosts of Anisakis Simplex (Nematoda: Anisakidae) in the Northwestern North Pacific Ocean. Rep. Int. Whal. Commn.46, 415420.

  • 397

    Kwak M. L. Heath A. C. Cardoso P. (2020). Methods for the Assessment and Conservation of Threatened Animal Parasites. Biol. Conserv.248, 108696. doi: 10.1016/j.biocon.2020.108696

  • 398

    La Linn M. Gardner J. Warrilow D. Darnell G. A. McMahon C. R. Field I. et al . (2001). Arbovirus of Marine Mammals: A New Alphavirus Isolated From the Elephant Seal Louse, Lepidophthirus Macrorhini. J. Virol.75, 41034109. doi: 10.1128/JVI.75.9.4103-4109.2001

  • 399

    Lam K. K. Y. (2000). Algal and Sessile Invertebrate Recruitment Onto an Experimental PFA-Concrete Artificial Reef in Hong Kong. Asian Mar. Biol.17, 5576.

  • 400

    Lane E. P. De Wet M. Thompson P. Siebert U. Wohlsein P. Plön S. (2014). A Systematic Health Assessment of Indian Ocean Bottlenose (Tursiops Aduncus) and Indo-Pacific Humpback (Sousa Plumbea) Dolphins Incidentally Caught in Shark Nets Off the KwaZulu-Natal Coast, South Africa. PloS One9 (9), e107038. doi: 10.1371/journal.pone.0107038

  • 401

    Leach W. E. (1817). Distribution Systématique De La Classe Cirripède. J. Phys. Chim. Hist. Nat.85, 6769.

  • 402

    Lehnert K. Fonfara S. Wohlsein P. Siebert U. (2007). Whale Lice (Isocyamus delphinii) on a Harbour Porpoise (Phocoena Phocoena) From German Waters. Vet. Rec.161, 526528. doi: 10.1136/vr.161.15.526

  • 403

    Lehnert K. IJsseldijk L. Uy M. Boyi J. van Schalkwijk L. Tollenaar E. et al . (2021). Whale Lice (Isocyamus Deltobranchium & Isocyamus delphinii; Cyamidae) Prevalence in Odontocetes Off the German and Dutch Coasts – Morphological and Molecular Characterization and Health Implications. Int. J. Parasitol.: Parasites Wildl.15, 2230. doi: 10.1016/j.ijppaw.2021.02.015

  • 404

    Lehnert K. Poulin R. Presswell B. (2019). Checklist of Marine Mammal Parasites in New Zealand and Australian Waters. J. Helminthol.93 (6), 649676. doi: 10.1017/s0022149x19000361

  • 405

    Lehnert K. Randhawa H. Poulin R. (2017). Metazoan Parasites From Odontocetes Off New Zealand: New Records. Parasitol. Res.116, 28612868. doi: 10.1007/s00436-017-5573-0

  • 406

    Leung Y. M. (1965). A Collection of Whale-Lice (Cyamidae: Amphipoda). Bull. California Acad. Sci.64, 132143.

  • 407

    Leung Y. M. (1967). An Illustrated Key to the Species of Whale-Lice (Amphipoda, Cyamidae), Ectoparasites of Cetacea, With a Guide to the Literature. Crustaceana12 (3), 279291. doi: 10.1163/156854067X00251

  • 408

    Leung Y. M. (1970a). First Record of the Whale-Louse Genus Syncyamus (Cyamidae: Amphipoda) From the Western Mediterr. Invest. Cet.582, 243247.

  • 409

    Leung Y. M. (1970b). Cyamus Orcini, a New Species of Whale-Louse (Cyamidae, Amphipoda) From a Killer Whale. Bull. Inst. Franç. Afrique Noire32, 669675.

  • 410

    Leung Y. M. (1976). Life Cycle of Cyamus Scammoni (Amphipoda: Cyamidae), Ectoparasite of Gray Whale, With a Remark on the Associated Species. Sci. Rep. Whales Res. Inst.28, 153160.

  • 411

    Leung T. L. F. Poulin R. (2008). Parasitism, Commensalism, and Mutualism: Exploring the Many Shades of Symbioses. Vie Milieu/Life Environ., 107115.

  • 412

    Lewis A. G. (1967). Copepod Crustaceans Parasitic on Teleost Fishes of the Hawaiian Islands. Proc. U. S. Nat. Mus.121, 1204. doi: 10.5479/si.00963801.121-3574.1

  • 413

    Lillie D. G. (1910). Observations on the Anatomy and General Biology of Some Members of the Larger Cetacea. Proc. Zool. Soc. Lond.3, 769792. doi: 10.1111/j.1096-3642.1910.tb01916.x

  • 414

    Lincoln R. J. Hurley D. E. (1974a). Catalogue of the Whale-Lice (Crustacea, Amphipoda, Cyamidae) in the Collections of the British Museum (Natural History). Bull. Br. Mus. Nat. Hist. Zool.27, 6572. doi: 10.5962/bhl.part.22972

  • 415

    Lincoln R. J. Hurley D. E. (1974b). Scutocyamus Parvus, a New Genus and Species of Whale-Louse (Amphipoda: Cyamidae) Ectoparasitic on the North Atlantic White-Beaked Dolphin. Bull. Brit. Mus. Nat. Hist. Zool.27 (2), 5964. doi: 10.5962/bhl.part.22971

  • 416

    Lincoln R. J. Hurley D. E. (1980). Scutocyamus Antipodensis N. Sp. (Amphipoda: Cyamidae) on Hector’s Dolphin (Cephalorhynchus Hectori) From New Zealand. N. Z. J. Mar. Freshwater Res.14, 295301. doi: 10.1080/00288330.1980.9515872

  • 417

    Lincoln R. J. Hurley D. E. (1981). A New Species of the Whale-Louse Syncyamus (Crustacea: Amphipoda: Cyamidae) Ectoparasitic on Dolphins From South Africa. Ann. Cape Prov. Mus. Nat. Hist.13 (13), 187194.

  • 418

    Linehan E. J. (1979). The Trouble With Dolphins. Natl. Geographic Mag.155 (4), 540.

  • 419

    Linnaeus C. (1758). “Systema Naturae Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis,” in Editio decima, reformata, 10th revised edition, vol. 1, 824 pp . doi: 10.5962/bhl.title.542

  • 420

    Liouville J. (1913). Cétacés De L'antarctique (Paris: Deuxième Expédition Antarctique Française), 19081910. *824 pp.

  • 421

    Lockyer C. (1979). Response of Orcas to Tagging. Carnivore11, 1921.

  • 422

    López B. A. Macaya E. C. Tala F. Tellier F. Thiel M. (2017). The Variable Routes of Rafting: Stranding Dynamics of Floating Bull Kelp Durvillaea Antarctica (Fucales, Phaeophyceae) on Beaches in the SE Pacific. J. Phycol.53 (1), 7084. doi: 10.1111/jpy.12479

  • 423

    Lorenzen S. (1986). Odontobius (Nematoda, Monhysteridae) From the Baleen Plates of Whales and its Relationship to Gammarinema Living on Crustaceans. Zool. Scr.15 (2), 101106. doi: 10.1111/j.1463-6409.1986.tb00213.x

  • 424

    Lorion C. M. Markle D. F. Reid S. B. Docker M. F. (2000). Redescription of the Presumed-Extinct Miller Lake Lamprey, Lampetra Minima. Copeia100 (4), 10191028. doi: 10.1643/0045-8511(2000)000[1019:ROTPEM]2.0.CO;2

  • 425

    Louella M. Dolar L. (2002). “Fraser's Dolphin Lagenodelphis Hosei” in Encyclopedia of Marine Mammals. Eds. PerrinW. F.WursigB.ThewissenJ. G. M. (London: Academic Press), 485487.

  • 426

    Lowry J. K. Myers A. A. (2013). A Phylogeny and Classification of the Senticaudata Subord. Nov. Crustacea: Amphipoda. Zootaxa3610 (1), 180. doi: 10.11646/zootaxa.3610.1.1

  • 427

    Lütken C. F. (1870). Conspectus Cyamidarum Borealium Hujusque Cognitarum. Vidensk. Selsk. Forhandl. Crustaceana13, 279280. doi: 10.5962/bhl.part.9800

  • 428

    Lütken C. F. (1873). Bidrag Til Kundskab Om Arterne Af Slaegten Cyamus Latr. Eller Hvallusene. Vidensk. Selsk. Skr.10 (3), 230284.

  • 429

    Lütken C. F. (1887). Tillaeg Til “Bidrag Til Kundskab Om Arterne Af Slaegten Cyamus Latr. Eller Hvallu Sene”. Vidensk. Selsk. Skr.4, 316322.

  • 430

    Lütken C. F. (1893). Andet Tillaeg Til “Bidrag Til Kundskab Om Arterne Af Slaegten Cyamus Latr. Eller Hvallusene. Vidensk. Selsk. Skr.9, 421434.

  • 431

    MacIntyre R. J. (1966). Rapid Growth in Stalked Barnacles. Nature212, 637638. doi: 10.1038/212637a0

  • 432

    Mackenzie K. (2002). Parasites as Biological Tags in Population Studies of Marine Organisms: An Update. Parasitology124 (7), 153163. doi: 10.1017/S0031182002001518

  • 433

    Mackintosh N. A. Wheeler J. F. G. (1929). Southern Blue and Fin Whales. Discovery Rep.1, 257540.

  • 434

    Magni P. A. Venn C. Aquila I. Pepe F. Ricci P. Di Nunzio C. et al . (2015). Evaluation of the Floating Time of a Corpse Found in a Marine Environment Using the Barnacle Lepas Anatifera L. (Crustacea: Cirripedia: Pedunculata). Forensic Sci. Int.247, e6e10. doi: 10.1016/j.forsciint.2014.11.016

  • 435

    Mahnken T. Gilmore R. M. (1960). Suckerfish on a Porpoise. J. Mammal.41 (1), 134. doi: 10.2307/1376540

  • 436

    Maran B. A. V. Moon S. Y. Ohtsuka S. Oh S. Y. Soh H. Y. Myoung J. G. et al . (2013). The Caligid Life Cycle: New Evidence From Lepeophtheirus Elegans Reconciles the Cycles of Caligus and Lepeophtheirus (Copepoda: Caligidae). Parasite20, 15. doi: 10.1051/parasite/2013015

  • 437

    Marcer F. Marchiori E. Centelleghe C. Ajzenberg D. Gustinelli A. Meroni V. et al . (2019). Parasitological and Pathological Findings in Fin Whales Balaenoptera Physalus Stranded Along Italian Coastlines. Dis. Aquat. Org.133 (1), 2537. doi: 10.3354/dao03327

  • 438

    Margolis L. (1954a). Three Kinds of Whale-Lice (Cyamidae: Amphipoda) From the Pacific Coast of Canada, Including a New Species. J. Fish. Res. Board Can.11 (3), 319325. doi: 10.1139/f54-020

  • 439

    Margolis L. (1954b). Delphinapterus Leucas, a New Host Record for the Whale-Louse, Paracyamus Nodosus (Lütken). J. Parasitol.40, 365. doi: 10.2307/3273757

  • 440

    Margolis L. (1955). Notes on the Morphology, Taxonomy and Synonymy of Several Species of Whale-Lice (Cyamidae: Amphipoda). J. Fish. Res. Board Can.12 (l), 121133. doi: 10.1139/f55-009

  • 441

    Margolis L. (1959). Records of Cyamus Balaenopterae Barnard and Neocyamus Physeteris (Pouchet), Two Species of Whale-Lice (Amphipoda), From the Northeast Pacific. Can. J. Zool.37 (6), 895897. doi: 10.1139/z59-086

  • 442

    Margolis L. McDonald T. E. Bousfield E. L. (2000). The Whale Lice (Amphipoda: Cyamidae) of the Northeastern Pacific Region. Amphipacifica II4, 63117.

  • 443

    Mariniello L. Cerioni S. Di Cave D. (1994). Ridescrizione Di Syncyamus Aequus Lincoln Ed Hurley 1981 (Amphipoda: Cyamidae), Ectoparassita Di Stenella Coeruleoalba (Meyen 1833) E Prima Segnalazione Per Le Acque Italiane. Parassitologia36, 313316.

  • 444

    Marino L. Stowe J. (1997). Lateralized Behavior in a Captive Beluga Whale (Delphinapterus Leucas). Aquat. Mamm.23, 101104.

  • 445

    Marloth R. (1900). Notes on the Mode of Growth of Tubicinella Trachaelis, the Barnacle of the Southern Right Whale. Trans. S. Afr. Phil. Soc11, 16. doi: 10.1080/21560382.1900.9525952

  • 446

    Marlow B. (1962). A Recent Record of the Dugong, Dugong Dugon, From New South Wales. J. Mammal.43, 433433. doi: 10.2307/1376973

  • 447

    Marlow B. G. (1963). Rare Whale Washed Up on Sydney Beach. Aust. Nat. Hist.15, 164.

  • 448

    Maronna M. M. Miranda T. P. Pena Cantero A. L. Barbeitos M. S. Marques A. C. (2016). Towards a Phylogenetic Classification of Leptothecata (Cnidaria, Hydrozoa). Sci. Rep.6, 18075. doi: 10.1038/srep18075

  • 449

    Martínez R. Segade P. Martínez-Cedeira J. A. Arias C. García-Estévez J. M. Iglesias R. (2008). Occurrence of the Ectoparasite Isocyamus Deltobranchium (Amphipoda: Cyamidae) on Cetaceans From Atlantic Waters. J. Parasitol.94 (6), 12391242. doi: 10.1645/GE-1518.1

  • 450

    Martini F. (1998). “The Ecology of Hagfishes,” in The Biology of Hagfishes. Eds. JorgensenJ. M.MalteH. (London: Chapman & Hall), 5777. doi: 10.1007/978-94-011-5834-3_5

  • 451

    Martín V. Tejedor M. Pérez-Gil M. Dalebout M. L. Arbelo M. Fernández A. (2011). A Sowerby's Beaked Whale (Mesoplodon Bidens) Stranded in the Canary Islands: The Most Southern Record in the Eastern North Atlantic. Aquat. Mamm.37 (4), 512519. doi: 10.1578/AM.37.4.2011.512

  • 452

    Maruzzo D. Aldred N. Clare A. S. Høeg J. T. (2012). Metamorphosis in the Cirripede Crustacean Balanus Amphitrite. PloS One7 (5), e37408. doi: 10.1371/journal.pone.0037408

  • 453

    Matthews L. H. (1937). The Humpback Whale, Megaptera novaeangliae. Discovery Rep.17, 792.

  • 454

    Matthews L. H. (1938a). Notes on the Southern Right Whale, Eubalaena Australis. Discovery Rep.17, 169182.

  • 455

    Matthews L. H. (1938b). The Sei Whale Balaenoptera Borealis. Discovery Rep.17, 183290.

  • 456

    Matthews L. H. (1938c). The Sperm Whale, Physeter Catodon. Discovery Rep.17, 93168.

  • 457

    Matthews C. Ghazal M. Lefort K. Inuarak E. (2020). Epizoic Barnacles on Arctic Killer Whales Indicate Residency in Warm Waters. Mar. Mamm. Sci.36 (3), 10101014. doi: 10.1111/mms.12674

  • 458

    McAlpine D. (2003). “Pygmy and Dwarf Sperm Whales (Kogia Breviceps and K. Sima),” in Encyclopedia of Marine Mammals. Eds. PerrinW. F.WürsigB.ThewissenJ. G. M. (San Diego, CA: Academic Press), 10071009.

  • 459

    McAlpine D. F. Murison L. D. Hoberg E. P. (1997). New Records for the Pygmy Sperm Whale, Kogia Breviceps (Physeteridae) From Atlantic Canada With Notes on Diet and Parasites. Mar. Mamm. Sci.13 (4), 701704. doi: 10.1111/j.1748-7692.1997.tb00093.x

  • 460

    McCann C. (1975). A Study of the Genus Berardius Duvernoy. Sci. Rep. Whales Res. Inst.27, 111137.

  • 461

    McSweeney D. J. Baird R. W. Mahaffy S. D. (2007). Site Fidelity, Associations, and Movements of Cuvier’s (Ziphius cavirostris) and Blainville’s (Mesoplodon densirostris) Beaked Whales Off the Island of Hawaii. Mar. Mamm. Sci.23, 666687. doi: 10.1111/j.1748-7692.2007.00135.x

  • 462

    Mead J. G. (1975). Preliminary Report on the Former Net Fisheries for Tursiops Truncatus in the Western North Atlantic. Fish. Res. Board Can.32 (7), 11551162. doi: 10.1139/f75-136

  • 463

    Mead J. G. (1989). “Beaked Whales of the Genus Mesoplodon,” in Handbook of Marine Mammals. Volume 4. River Dolphins and the Larger Toothed Whales. Eds. RidgwayS. H.HarrisonR.(London:Academic Press), 349430.

  • 464

    Mead J. G. Potter C. W. (1990). “Natural History of Bottlenose Dolphins Along the Central Atlantic Coast of the United States,” in The Bottlenose Dolphin. Eds. LeatherwoodS.ReevesR. (San Diego, CA: Academic Press), 165195. doi: 10.1016/B978-0-12-440280-5.50013-5

  • 465

    Methion S. Díaz López B. (2019). First Record of Atypical Pigmentation Pattern in Fin Whale Balaenoptera Physalus in the Atlantic Ocean. Dis. Aquat. Org.135 (2), 121125. doi: 10.3354/dao03385

  • 466

    Migaki G. (1987). 21 Selected Dermatoses of Marine Mammals. Clin. Dermatol.5 (3), 155164. doi: 10.1016/s0738-081x(87)80022-6

  • 467

    Mignucci-Giannoni A. A. Beck C. A. Montoya-Ospina R. A. Williams E. H. Jr. (1999). Parasites and Commensals of the West Indian Manatee From Puerto Rico. Skin66 (1), 87812.

  • 468

    Mignucci-Giannoni A. A. Hoberg E. P. Siegel-Causey D. Williams E. H. Jr. (1998). Metazoan Parasites and Other Symbionts of Cetaceans in the Caribbean. J. Parasitol.84(5), 939946. doi: 10.2307/3284625

  • 469

    Miller A. K. Baker C. Kitson J. C. Yick J. L. Manquel P. E. I. Alexander A. et al . (2021). The Southern Hemisphere Lampreys (Geotriidae and Mordaciidae). Rev. Fish Biol. Fish.31, 201232. doi: 10.1007/s11160-021-09639-x

  • 470

    Minchin D. (1996). Tar Pellets and Plastics as Attachment Surfaces for Lepadid Cirripedes in the North Atlantic Ocean. Mar. Pollut. Bull.32 (12), 855859. doi: 10.1016/S0025-326X(96)00045-8

  • 471

    Minton G. Van Bressem M. F. Willson A. Collins T. Harthy S. Willson M. (2020). Visual Health Assessment and Evaluation of Anthropogenic Threats to Arabian Sea Humpback Whales in Oman. Annual IWC Scientific Committee 2020 (Cambridge, UK). [In press]

  • 472

    Minussi Rama A. C. (2020). Prevalência, Intensidade E Distribuição De Xenobalanus globicipitis (Cirripedia: Coronulidae) Em Cetáceos Na Bacia De Santos, Brasil, Florianópolis: Universidade Federal de Santa Catarina [Bachelor Thesis].

  • 473

    Miočić-Stošić J. Pleslić G. Holcer D. (2020). Sea Lamprey (Petromyzon Marinus) Attachment to the Common Bottlenose Dolphin (Tursiops Truncatus). Aquat. Mamm.46 (2), 152166. doi: 10.1578/AM.46.2.2020.152

  • 474

    Mizue K. (1950). Factory Ship Whaling Around Bonin Islands in 1948. Sci. Rep. Whales Res. Inst. Tokyo3, 106118.

  • 475

    Mizue K. Murata T. (1951). Biological Investigation on the Whales Caught by the Japanese Antarctic Whaling Fleets Season 1949–50. Sci. Rep. Whales Res. Inst. Tokyo6, 73131.

  • 476

    Moazzam M. Rizvi S. H. N. (1979). Some Observations of the Post-Cyprid Stages and Population Structure of Conchoderma Virgatum Var. Hunteri From Offshore Waters of Pakistan. Pakistan J. Sci. Ind. Res.22, 305307.

  • 477

    Moher D. Shamseer L. Clarke M. Ghersi D. Liberati A. Petticrew M. et al . (2015). Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev.4, 19. doi: 10.1186/2046-4053-4-1

  • 478

    Mohrbeck I. Raupach M. J. Martinez Arbizu P. Knebelsberger T. Laakmann S. (2015). High-Throughput Sequencing-The Key to Rapid Biodiversity Assessment of Marine Metazoa? PloS One10 (10), E0140342. doi: 10.1371/journal.pone.0140342

  • 479

    Monod T. (1938). Conchoderma auritum (L. 1767) Olfers 1814 Sur Un Ziphius Cf. Cavirostris (?) G. Cuvier 1823. Bull. Trav. Sta. Aquicult. Pêche Castiglione1, 205210. [In French].

  • 480

    Monod T. H. Serene R. (1976). Parasitic, Commensal, and Inquiline Crustaceans Collected During the Rumphius Expedition II. Osean. Indones.6, 2327.

  • 481

    Moore M. Steiner L. Jann B. (2003). Cetacean Surveys in the Cape Verde Islands and the Use of Cookiecutter Shark Bite Lesions as a Population Marker for Fin Whales. Aquat. Mamm.29 (3), 383389. doi: 10.1578/01675420360736569

  • 482

    Mörch J. A. (1911). On the Natural History of Whalebone Whales. Proc. Zool. Soc Lond.47, 661670. doi: 10.1111/j.1096-3642.1911.tb01952.x

  • 483

    Moreno-Colom P. Ten S. Raga J. A. Aznar F. J. (2020). Spatial Distribution and Aggregation of Xenobalanus globicipitis on the Flukes of Striped Dolphins, Stenella Coeruleoalba: An Indicator of Host Hydrodynamics? Mar. Mamm. Sci.36 (3), 897914. doi: 10.1111/mms.12691

  • 484

    Morris R. A. Mowbray L. S. (1966). An Unusual Barnacle Attachment on the Teeth of the Hawaiian Spinning Dolphin. Nor. Hvalfangst-lid. (Norw. Whaling Gaz.)55, 1516.

  • 485

    Moyse J. (1984). Some Observations on the Swimming and Feeding of the Nauplius Larvae of Lepas Pectinata (Cirripedia: Crustacea). Zool. J. Linn. Soc80 (2-3), 323336. doi: 10.1111/j.1096-3642.1984.tb01981.x

  • 486

    Moyse J. (1987). Larvae of lepadomorph barnacles. Barnacle BiologySouthwardA. J.BalkemaA. A.(Rotterdam: Crustacean Issues), 329362.

  • 487

    Mullineaux L. Butman C. (1991). Initial Contact, Exploration and Attachment of Barnacle (Balanus Amphitrite) Cyprids Settling in Flow. Mar. Biol.110 (1), 93103. doi: 10.1007/BF01313096

  • 488

    Murase M. Tajima Y. Okamoto M. Matsuishi T. Yamada T. K. Asakawa M. (2014). An Ectoparasite and Epizoite From a Western Gray Whale (Eschrichtius Robustus) Stranded on Tomakomai, Hokkaido, Japan. J. Rakuno Gakuen Univ.38 (2), 149152.

  • 489

    Nagasawa K. Imai Y. Ishida K. (1985). Distribution, Abundance, and Effects of Pennella sp. (Copepoda: Pennellidae), Parasitic on the Saury, Cololabis Saira (Brevoort), in the Western North Pacific Ocean and Adjacent Seas, 1984. Bull. Biogeogr. Soc. Japan40(5), 3542.

  • 490

    Nakano H. Tabuchi M. (1990). Occurrence of the Cookiecutter Shark Isistius Brasiliensis in Surface Waters of the North Pacific Ocean. Japanese J. Ichthyol.37 (1), 6063.

  • 491

    Nansen F. (1925). Hunting and Adventure in the Arctic (London: J. M. Dent & Sons).

  • 492

    Nasu K. (1958). Deformed Lower Jaw of Sperm Whale. Sci. Rep. Whales Res. Inst. Tokyo13, 211212.

  • 493

    Natural History Museum (2020) Natural History Museum (London) Collection Specimens. Available at: https://www.gbif.org/occurrence/1056411821 (Accessed April 2, 2021).

  • 494

    Nemoto T. (1955). White Scars on Whales (I) Lamprey Marks. Sci. Rep. Whales Res. Inst.10, 6977.

  • 495

    Nemoto T. (1958). Cocconeis Diatoms Infected on Whales in the Antarctic. Sci. Rep. Whales Res. Inst. Tokyo13, 185192.

  • 496

    Nemoto T. Brownell F. L. Jr. Isfiimaru T. (1977). Cocconeis Diatoms on the Skin of Franciscana. Sci. Rep. Whales Res. Inst.29, 101105.

  • 497

    Newman W. A. Abbott D. P. (1980). “Cirripedia: The Barnacles” in Intertidal Invertebrates of California. Eds. MorrisR. H.AbbottD. P.HaderlieE. C. (Palo Alto, CA: Stanford University Press), 504535.

  • 498

    Nelson E. w. . On the Occurrence of Diatoms on the Skin of Whales by A. G. Bennett. Appendix by E. W. Nelson. (Cocconeis Ceticola). Proc. Royal Soc. B (1920) 91(641), 352357.

  • 499

    Newman W. A. Ross A. (1971). Antarctic Cirripedia. Antarctic Res. Ser.14, 1257. doi: 10.1029/AR014

  • 500

    Newman W. A. Ross A. (1976). Revision of the Balanomorph Barnacles Including a Catalogue of the Species. San Diego Soc Nat. Hist.9, 1108.

  • 501

    Nichols O. C. Hamilton P. K. (2004). Occurrence of the Parasitic Sea Lamprey, Petromyzon Marinus, on Western North Atlantic Right Whales, Eubalaena Glacialis. Env. Biol. Fish.71, 413417. doi: 10.1007/s10641-004-0776-5

  • 502

    Nichols O. C. Tscherter U. T. (2011). Feeding of Sea Lampreys Petromyzon Marinus on Minke Whales Balaenoptera Acutorostrata in the St Lawrence Estuary, Canada. J. Fish Biol.78 (1), 338343. doi: 10.1111/j.1095-8649.2010.02842.x

  • 503

    Nicklin C. (1963). Whale Tale. Skin Diver Magazine.12 (11), 1215. doi: 10.1080/05775132.1963.11469513

  • 504

    Nilsson-Cantell C. A. (1921). Cirripeden-Studien. Zur Kenntnis Der Biologie, Anatomie Und Systematik Dieser Gruppe. Zoologiska Bidrag Fra˚n Uppsala7, 75.395. doi: 10.5962/bhl.title.10682

  • 505

    Nilsson-Cantell C. A. (1928). Studies on Cirripeds in the British Museum (Natural History). Ann. Mag. Nat. Hist.10 (2), 139. doi: 10.1080/00222932808672845

  • 506

    Nilsson-Cantell C. A. (1930a). Thoracic Cirripedes Collected in 1925–1927. Discovery Rep.2, 223260.

  • 507

    Nilsson-Cantell C. A. (1930b). Cirripédes. Résultats Scientifiques Du Voyage Aux Indes Orientales Néerlandaise De LL. AA. RR. Le Prince Et La Princesse Léopold De Belgique. Mémoires du Musée R. d’Histoire Naturelle Belgique3, 124.

  • 508

    Nilsson-Cantell C. A. (1930c). Cirripedien Von Der Stewart Insel Und Von Südgeorgien. Senckenbergiana12, 210213.

  • 509

    Nilsson-Cantell C. A. (1931). Revision Der Sammlung Recenter Cirripedien Des Naturhistorischen Museums in Basel. Verhandl. Naturf Gesell Basel42, 103137.

  • 510

    Nilsson-Cantell C. A. (1939). Thoracic Cirripedes Collected in 1925–1936. Discovery Rep.18, 19251936.

  • 511

    Nilsson-Cantell C. A. (1978). Cirripedia Thoracica and Acrothoracica Vol. 5 (Oslo: Marine Invertebrates of Scandinavia, Universitetsforlaget), 1133.

  • 512

    Nishiwaki M. (1959). Humpback Whales in Ryukyuan Waters. Sci. Rep. Whales Res. Inst.14, 4987.

  • 513

    Nishiwaki M. Hayashi K. (1950). Biological Survey of Fin and Blue Whales Taken in the Antarctic Season 1947–48 by the Japanese Fleet. Sci. Rep. Whales Res. Inst. Tokyo3, 132190.

  • 514

    Nishiwaki M. Oye T. (1951). Biological Investigation on Blue Whales (Balaenoptera Musculus) and Fin Whales (Balaenoptera Physalus) Caught by the Japanese Antarctic Whaling Fleets. Sci. Rep. Whales Res. Inst.5, 91167.

  • 515

    Nogata Y. Matsumura K. (2006). Larval Development and Settlement of a Whale Barnacle. Biol. Lett.2, 9293. doi: 10.1098/rsbl.2005.0409

  • 516

    Noke W. (2004). The Association of Echeneids With Bottlenose Dolphins (Tursiops Truncatus) in the Indian River Lagoon, Florida, USA. Aquat. Mamm.30 (2), 296298. doi: 10.1578/AM.30.2.2004.296

  • 517

    Notarbartolo di Sciara G. Watkins W. A. (1979). A Remora, Remilegia Australis, Attached to an Atlantic Spinner Dolphin, Stenella Longirostris. Bull. S. California Acad. Sci.79 (3), 119121.

  • 518

    O'Clair R. M. O'Clair C. E. (1998). Southeast Alaska's Rocky Shores. Animals (Auke Bay, AK: Plant Press).

  • 519

    O’Connor B. Franco J. M. F. (2003). Conchoderma auritum (L.) (Cirripedia) Recorded From a Sperm Whale Physeter Catodon L. Washed Up at Claddaghduff, Co Galway. Ir. Nat. J.27 (6), 236236.

  • 520

    Ogawa K. Matsuzaki K. Misaki H. (1997). A New Species of Balaenophilus (Copepoda: Harpacticoida), an Ectoparasite of a Sea Turtle in Japan. Zool. Sci.14 (4), 691700. doi: 10.2108/zsj.14.691

  • 521

    Ohlin A. (1893). Some Remarks on the Bottlenose-Whale (Hyperoodon). Lunds. Univ. Arskr.29, 114.

  • 522

    Ohno M. Fujino K. (1952). Biological Investigation on the Whales Caught by the Japanese Antarctic Whaling Fleets, Season 1950/51. Sci. Rep. Whales Res. Inst.7, 125188.

  • 523

    Ohsumi S. (1973). Find of Marlin Spear From the Antarctic Minke Whales. Sci. Rep. Whales Res. Inst. Tokyo25, 237239.

  • 524

    Ohsumi S. Masaki Y. Kawamura A. (1970). Stock of the Antarctic Minke Whale. Sci. Rep. Whales Res. Inst.22, 75125.

  • 525

    Øines Ø. Heuch P. A. (2005). Identification of Sea Louse Species of the Genus Caligus Using mtDNA. J. Mar. Biolog. Assoc. U.K.85, 7379. doi: 10.1017/S0025315405010854h

  • 526

    Øines Ø. Schram T. (2008). Intra- or Inter-Specific Difference in Genotypes of Caligus elongatus Nordmann 1832? Acta Parasitol.53 (1), 93105. doi: 10.2478/s11686-008-0002-2

  • 527

    Ólafsson E. Ingólfsson R. Steinarsdóttir M. B. . Harpacticoid Copepod Communities of Floating Seaweed: Controlling Factors and Implications for Dispersal. Hydrobiologia (2001) 453(1), 189200.

  • 528

    Ólafsdóttir D. Shinn A. (2013). Epibiotic Macrofauna on Common Minke Whales, Balaenoptera Acutorostrata Lácepede 1804, in Icelandic Waters. Parasites Vectors6 (1), 105. doi: 10.1186/1756-3305-6-105

  • 529

    Ólafsson E. Ingólfsson A. Steinarsdóttir M.B. (2001). Harpacticoid copepod communities of floating seaweed: controlling factors and implications for dispersal. Hydrobiologia453, 189200. doi: 10.1023/A:1013196724039

  • 530

    Oliveira J. B. Morales J. A. González-Barrientos R. C. Hernández-Gamboa J. Hernández-Mora G. (2011). Parasites of Cetaceans Stranded on the Pacific Coast of Costa Rica. Vet. Parasitol.182 (2-4), 319328. doi: 10.1016/j.vetpar.2011.05.014

  • 531

    Oliver G. Trilles J. P. (2000). Crustacés Parasites Et Epizoïtes Du Cachalot, Physeter Catodon Linnaeus 1758 (Cetacea, Odontoceti), Dans Le Golfe Du Lion (Méditerranée Occidentale). Parasite7 (4), 311321. doi: 10.1051/parasite/2000074311

  • 532

    Olsen O. (1913). On the External Characters and Biology of Bryde’s Whales (Balaenoptera Brydei), a New Rorqual From the Coast of South Africa. Proc. Zool. Soc Lond., 10731090. doi: 10.1111/j.1096-3642.1913.tb02005.x

  • 533

    Omura H. (1950a). Whales in the Adjacent Waters of Japan. Sci. Rep. Whales Res. Inst. Tokyo4, 27113.

  • 534

    Omura H. (1950b). Diatom Infection on Blue and Fin Whales in the Antarctic Whaling Area V (the Ross Sea Area). Sci. Rep. Whales Res. Inst.4, 1426.

  • 535

    Omura H. (1958). North Pacific Right Whale. Sci. Rep. Whales Res. Inst.13, 152.

  • 536

    Omura H. Fujino K. Kimura S. (1955). Beaked Whale Berardius Bairdii of Japan With Notes on Ziphius cavirostris. Sci. Rep. Whales Res. Inst. Tokyo10, 89132.

  • 537

    Orams M. B. Schuetze C. (1998). Seasonal and Age/Size-Related Occurrence of a Barnacle (Xenobalanus globicipitis) on Bottlenose Dolphins (Tursiops Truncatus). Mar. Mamm. Sci.14, 186189. doi: 10.1111/j.1748-7692.1998.tb00706.x

  • 538

    O’Reilly M. (1998). Whale-Lice (Amphipoda: Cyamidae) and Sea Lice (Copepoda: Caligidae) From Stranded Whales in the Firth of Forth. Glasg. Nat.23 (3), 2426.

  • 539

    Orejas C. Rossi S. Peralba À. García E. Gili J. M. Lippert H. (2012). Feeding Ecology and Trophic Impact of the Hydroid Obelia Dichotoma in the Kongsfjorden (Spitsbergen, Arctic). Polar Biol.36 (1), 6172. doi: 10.1007/s00300-012-1239-7

  • 540

    O’Riordan C. E. (1979). Marine Fauna Notes From the National Museum of Ireland 6. Ir. Nat.' J.19, 356358.

  • 541

    Orrell T. (2020) NMNH Extant Specimen Records. Version 1.36 (National Museum of Natural History, Smithsonian Institution). Available at: https://www.gbif.org/occurrence/1320470940 (Accessed June 23, 2021).

  • 542

    Osmond M. G. Kaufman G. D. (1998). A Heavily Parasitized Humpback Whale (Megaptera novaeangliae). Mar. Mamm. Sci.14 (1), 146149. doi: 10.1111/j.1748-7692.1998.tb00698.x

  • 543

    Otani M. Oumi T. Uwai S. Hanyuda T. Prabowo R. E. Yamaguchi T. et al . (2007). Occurrence and Diversity of Barnacles on International Ships Visiting Osaka Bay, Japan, and the Risk of Their Introduction. Biofouling23 (4), 277286. doi: 10.1080/08927010701315089

  • 544

    O’Toole B. (2002). Phylogeny of the Species of the Superfamily Echeneoidea (Perciformes: Carangoidei: Echeneidae, Rachycentridae, and Coryphaenidae), With an Interpretation of Echeneid Hitchhiking Behaviour. Can. J. Zool.80 (4), 596623. doi: 10.1139/z02-031

  • 545

    Öztürk A. A. Dede A. Tonay A. M. Danyer E. Aytemiz I. (2015). Stranding of a Minke Whale on the Eastern Mediterranean Coast of Turkey. J. Black Sea/Mediter. Envir.21 (2), 232237.

  • 546

    Pace D. S. Mussi B. Miragliuolo A. Vivaldi C. Ardizzone G. (2016). First Record of a Hagfish Anchored to a Living Bottlenose Dolphin in the Mediterranean Sea. J. Mammal.97 (3), 960965. doi: 10.1093/jmammal/gyw022

  • 547

    Pacheco A. S. Castro C. Carnero-Hauman R. Villagra D. Pinilla S. Denkinger J. et al . (2019). Sightings of an Adult Male Killer Whale Match Humpback Whale Breeding Seasons in Both Hemispheres in the Eastern Tropical Pacific. Aquat. Mamm.45, 320326. doi: 10.1578/AM.45.3.2019.320

  • 548

    Page M. J. McKenzie J. E. Bossuyt P. M. Boutron I. Hoffmann T. C. Mulrow C. D. et al . (2021). The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ372, n71. doi: 10.1136/bmj.n71

  • 549

    Palacios D. M. Salazar S. K. Day D. (2004). Cetacean Remains and Strandings in the Galapagos Islands 1923-2003. Lat. Am. J. Aquat. Mamm.3(2), 127150. doi: 10.5597/lajam00058

  • 550

    Palmer M. A. (1988). Dispersal of Marine Meiofauna: A Review and Conceptual Model Explaining Passive Transport and Active Emergence With Implications for Recruitment. Mar. Ecol. Prog. Series48 (1), 8191. doi: 10.3354/meps048081

  • 551

    Papastamatiou Y. P. Wetherbee B. M. O’Sullivan J. Goodmanlowe G. D. Lowe C. G. (2010). Foraging Ecology of Cookiecutter Sharks (Isistius Brasiliensis) on Pelagic Fishes in Hawaii, Inferred From Prey Bite Wounds. Env. Biol. Fish.88 (4), 361368. doi: 10.1007/s10641-010-9649-2

  • 552

    Parsons E. C. M. Overstreet R. M. Jefferson T. A. (2001). Parasites From Indo-Pacific Hump-Backed Dolphins (Sousa Chinensis) and Finless Porpoises (Neophocaena Phocaenoides) Stranded in Hong Kong. Vet. Rec.148, 776780. doi: 10.1136/vr.148.25.776

  • 553

    Pastene L. A. Jofre K. Acevedo M. Joyce M. (1990). First Record of the Blainville's Beaked Whale, Mesoplodon densirostris Blainville 1817 (Cetacea: Ziphiidae) in the Eastern Pacific. Mar. Mamm. Sci.6, 8284. doi: 10.1111/j.1748-7692.1990.tb00229.x

  • 554

    Pastorino G. Griffin M. (1996). An Extant Whale Barnacle (Cirripedia, Coronulidae) From Holocene Deposits of Buenos Aires (Argentina). Crustaceana69 (6), 769772. doi: 10.1163/156854096X00781

  • 555

    Patel B. (1959). The Influence of Temperature on the Reproduction and Moulting of Lepas Anatifera L. Under Laboratory Condition. J. Mar. Biolog. Assoc. U.K.38, 589597. doi: 10.1017/S0025315400007013

  • 556

    Paterson R. A. Van Dyck S. (1991). Studies of Two Humpback Whales, Megaptera novaeangliae, Stranded at Fraser Island, Queensland. Mem. Queensl. Mus.30, 343350.

  • 557

    Pearson R. M. van de Merwe J. P. Connolly R. M. (2020). Global Oxygen Isoscapes for Barnacle Shells: Application for Tracing Movement in Oceans. Sci. Total. Environ.705, 135782. doi: 10.1016/j.scitotenv.2019.135782

  • 558

    Penney M. S. Rawlings T. A. (2021). An Examination of Shallow-Water Hydroids (Cnidaria, Hydrozoa, Hydroidolina) in Cape Breton, Nova Scotia, Using Morphology and DNA Barcoding. Northeastern Nat.28 (m18), 138. doi: 10.1656/045.028.m1801

  • 559

    Pérez-Losada M. Høeg J. T. Crandall K. A. (2004). Unraveling the Evolutionary Radiation of the Thoracican Barnacles Using Molecular and Morphological Evidence: A Comparison of Several Divergence Time Estimation Approaches. Syst. Biol.53 (2), 244264. doi: 10.1080/10635150490423458

  • 560

    Pérez-Losada M. Høeg J. Simon-Blecher N. Achituv Y. Jones D. Crandall K. (2014). Molecular Phylogeny, Systematics and Morphological Evolution of the Acorn Barnacles (Thoracica: Sessilia: Balanomorpha). Mol. Phylogenet. Evol.81, 147158. doi: 10.1016/j.ympev.2014.09.013

  • 561

    Pérez-Losada M. Harp M. Høeg J. T. Achituv Y. Jones D. Watanabe H. et al . (2008). The Tempo and Mode of Barnacle Evolution. Mol. Phylogenet. Evol.46 (1), 328346. doi: 10.1016/j.ympev.2007.10.004

  • 562

    Pérez-Zayas J. Mignucci-Giannoni A. Toyos-González G. Rosario-Delestre R. Williams E. (2002). Incidental Predation by a Largetooth Cookiecutter Shark on a Cuvier’s Beaked Whale in Puerto Rico. Aquat. Mamm.28, 308311.

  • 563

    Perrin W. (1969). The Barnacle, Conchoderma auritum, on a Porpoise (Stenella graffmani). J. Mammal.50(1), 149. doi: 10.2307/1378651

  • 564

    Peters I. T. Barendse J. (2016). “A Conservation Assessment of Eubalaena Australis,” in The Red List of Mammals of South Africa, Swaziland and Lesotho. Eds. ChildM. F.RoxburghL.Do LinhS. E.RaimondoD.Davies-MostertH. T. (South Africa: South African National Biodiversity Institute and Endangered Wildlife Trust).

  • 565

    Pettis H. M. Rolland R. M. Hamilton P. K. Brault S. Knowlton A. R. Kraus S. D. (2004). Visual Health Assessment of North Atlantic Right Whales (Eubalaena Glacialis) Using Photographs. Can. J. Zool.82 (1), 819. doi: 10.1139/z03-207

  • 566

    Pfeiffer C. J. (2009). ““Whale Lice”,” in Encyclopedia of Marine Mammals. Eds. PerrinW. F.WürsigB.ThewissenJ. G. M. (San Diego:Academic Press), 12201223. doi: 10.1016/B978-0-12-373553-9.00279-0

  • 567

    Pike G. C. (1951). Lamprey Marks on Whales. J. Fish. Res. Board Can.8, 275280. doi: 10.1139/f50-017

  • 568

    Pilleri G. (1967). Behaviour of the Pseudorca Crassidens (Owen) Off the Spanish Mediterranean Coasts. Rev. Suisse Zoologie74, 679683. doi: 10.5962/bhl.part.75874

  • 569

    Pilleri G. (1969a). The Barnacle, Conchoderma auritum, on a Porpoise (Stenella Graffmani). J. Mammal.50 (1), 149151. doi: 10.2307/1378651

  • 570

    Pilleri G. (1969b). Zahnbefall Durch Conchoderma auritum (Cirripedia) Bei Einem Pottwal Aus Den Natalgewässern. Invest. Cet.1, 192.

  • 571

    Pilleri G. (1970). Xenobalanus globicipitis Steenstrup on Delphinus Delphus, Stenella Styx, Tursiops Truncatus in the Western Mediterranean. Invest. Cet.2, 248249.

  • 572

    Pilleri G. Gihr M. (1969). Zur Anatomie Und Pathologie Von Inia Geoffrensis De Blainville 1817 (Cetacea, Sussuidae) Aus Dem Beni, Bolivien. Invest. Cet.1, 96106.

  • 573

    Pilleri G. Knuckey J. (1969). Behaviour Patterns of Some Delphinidae Observed in the Western Mediterranean. Z. Tierpsychol.26, 4872.

  • 574

    Pilsbry H. A. (1916). The Sessile Barnacles (Cirripedia) Contained in the Collections of the U.S. National Museum; Including a Monograph of the American Species. Bull. U.S. Natl. Mus.93, 1366. doi: 10.5479/si.03629236.93.1

  • 575

    Pinedo M. C. Praderi R. Brownell R. L. (1989). “Review of the Biology and Status of the Franciscana, Pontoporia Blainvillei,” in Biology and Conservation of the River Dolphins, vol. No. 3 . Eds. PerrinW. F.BrownellR. L.ZhouK.LiuJ. (Wuhan: Occasional Papers of the International Union for Conservation of Nature Species Survival Commission), 4651.

  • 576

    Pitman R. L. Fearnbach H. LeDuc R. Gilpatrick J. W. J. Ford J. K. B. Ballance L. T. (2007). Killer Whales Preying on a Blue Whale Calf on the Costa Rica Dome: Genetics, Morphometrics, Vocalisations and Composition of the Group. J. Cetacean Res. Manage.9, 151157.

  • 577

    Pitombo F. B. (2004). Phylogenetic Analysis of the Balanidae (Cirripedia, Balanomorpha). Zool. Scr.33 (3), 261276. doi: 10.1111/j.0300-3256.2004.00145.x

  • 578

    Plön S. Adam P. A. Andrianarivelo N. Braulik G. Bunbury N. Collins T. et al . (2020). “IndoCet Stranding Network-Report on Strandings for the Western Indian Ocean Region,” in International Whaling Commission. Report of the Scientific Committee Meeting.

  • 579

    Pompa S. Ehrlich P. R. Ceballos G. (2011). Global Distribution and Conservation of Marine Mammals. Proc. Nat. Acad. Sci.108 (33), 1360013605. doi: 10.1073/pnas.1101525108

  • 580

    Pope E. C. (1958). The Barnacle, Xenobalanus globicipitis Steenstrup in Australian Seas. Proc. R. Zool. Soc1956–57, 159161.

  • 581

    Porsild M. P. (1922). Scattered Observations on Narwhals. J. Mammal.41, 813. doi: 10.2307/1373444

  • 582

    Pouchet G. (1888). Sur Un Nouveau Cyamus (Physeteris) Parasite Du Cachalot. Compt. Rend. Acad. Sei. Paris107 (18), 698699.

  • 583

    Pouchet G. (1892). Contribution Ir I'histoire Des Cyames. J. Anat. Physiol. Norm. Path.28, 99108.

  • 584

    Pouchet G. Beauregard H. (1889). Recherches Sur Le Cachalot: Anatomie I-V. Nouv. Arch. Mus. Hist. Nat.3, 196.

  • 585

    Prestridge H. (2016) Biodiversity Research and Teaching Collections - TCWC Marine Invertebrates. Available at: https://www.gbif.org/occurrence/1234577280 (Accessed March 2, 2021).

  • 586

    Pruski S. Miglietta M. P. (2019). Fluctuation and Diversity of Hydromedusae (Hydrozoa, Cnidaria) in a Highly Productive Region of the Gulf of Mexico Inferred From High Frequency Plankton Sampling. Peer J.7, e7848. doi: 10.7717/peerj.7848

  • 587

    Pugliese M. C. Boettger S. A. Fish F. E. (2012). Barnacle Bonding: Morphology of Attachment of Xenobalanus globicipitis to its Host Tursiops Truncatus. J. Morphol.273 (4), 453459. doi: 10.1002/jmor.20006

  • 588

    Qiao Y. Ma X. Chen B. Zhong S. Chen X. (2020). First Report of Cyamus Boopis From a Humpback Whale (Megaptera novaeangliae) in the Coastal East China Sea. Res. Sq. doi: 10.21203/rs.3.rs-44880/v1 [Preprint]

  • 589

    Quidor A. (1912). Copépodes Parasites. Deuxieme Expedition Antarctique Francaise, (1908-1910) (Paris: Scientifics Naturals, Documents Scientifiques), 197214.

  • 590

    Radford K. W. Klawe W. L. (1965). Biological Observations on the Whale Sucker, Remilegia Australis-Echeneiformes: Echeneidae. Trans. San Diego Nat. Hist. Soc14 (6), 6572.

  • 591

    Raga J. A. (1988). On Some Morphological Variations of Syncyamus Aequus Lincoln & Hurley 1981 (Amphipoda, Cyamidae) From the Mediterranean Sea. Crustaceana60(1), 149152. doi: 10.1163/156854088X00050

  • 592

    Raga J. A. (1994). “Parasitismus Bei Den Cetacea,” in Handbuch Der Säugetiere Europas. Eds. RobineauD.DuguyR.KlimaM. (Wiesbaden: AULA-Verlag), 132179.

  • 593

    Raga J. A. Balbuena J. A. (1993). Parasites of the Long-Finned Pilot Whale, Globicephala melas (Traill 1809), in European Waters. Rep. Int. Whal. Commn.14, 391406.

  • 594

    Raga J. A. Balbuena J. A. Abril E. (1988). “Preliminary Report on Parasitological Research on Pilot Whales in the Faroe Islands,” in European Research on Cetaceans. Ed. EvansP. G. H. (Lisboa: European Cetacean Society), 6569.

  • 595

    Raga J. A. Carbonell E. (1985). New Dates About Parasites on Stenella Coeruleoalba (Meyen 1833) (Cetacea: Delphinidae) in the Western Mediterranean Sea. Invest. Cet.17, 207213.

  • 596

    Raga J. A. Carbonell E. Raduan M. A. (1982). Incidencias De Parásitos En Los Cetáceos Varados En Las Costas Españolas Del Mediterráneo. Memórias do Museu do Mar, Vol. 2. 111.

  • 597

    Raga J. A. Raduan M. A. (1982). First Record of Syncyamus Aequus Lincoln and Hurley 1981 (Amphipoda: Cyamidae) in the Mediterranean Sea. Invest. Cet.14, 2223.

  • 598

    Raga J. A. Raduan A. Blanco C. (1983a). Sobre La Presencia De Isocyamus delphinii (Guerin-Meneville 1836) (Amphipoda: Cyamidae) En Aguas Del Mediterráneo Español. Actas del I Congreso Ibérico de Entomologia, Facultad de Biología. León1 (2), 627630.

  • 599

    Raga J. A. Raduan M. A. Blanco C. Carbonell E. (1983b). Étude Parasitologique Du Dauphin Bleu Et Blanc Stenella Coeruleoalba Dans La Mediterranée Occidentale Vol. 28 (Monaco:Rapport P.-V Réunions—Commission Internationale pour l’Exploration Scientifique de la Mer Mediterranée), 211212.

  • 600

    Raga J. A. Sanpera C. (1986). Ectoparásitos Y Epizoítos De Balaenoptera Physalus (L. 1758) En Aguas Atlánticas Ibéricas. Inv. Pesq.50, 489498.

  • 601

    Rajaguru A. Shantha G. (1992). Association Between the Sessile Barnacle Xenobalanus globicipitis (Coronulidae) and the Bottlenose Dolphin Tursiops Truncatus (Delphinidae) From the Bay of Bengal, India, With a Summary of Previous Records From Cetaceans. Fish. Bull.90 (1), 197202.

  • 602

    Rappé G. (1985). Isocyamus delphinii (Guérin 1836), Eerste Vondst Van Een Walvisluis (Amphipoda, Cyamidae) Aan Onze Kust. Strandvlo5 (3), 6365.

  • 603

    Rappé G. (1988). Een Vondst Van Xenobalanus globicipitis in De Noordzee? Strandvlo8 (2), 100101.

  • 604

    Rappé G. (1991). “Isocyamus delphinii (Crustacea, Amphipoda, Cyamidae), a Possible Biological Indicator in the North Sea,” in European Research on Cetaceans. Eds. EvansP. G. H.AguilarA.SmeenkC. (Palma de Mallorca: Proceedings of the fourth annual conference of the European Cetacean Society), 121122.

  • 605

    Rappé G. Van Waerebeek K. (1988). “Xenobalanus globicipitis (Crustacea: Cirripedia) on Cetaceans in the Northeast Atlantic and the Mediterranean: A Review,” in European Research on Cetaceans. Ed. EvansP. G. H. (Lisboa: European Cetacean Society), 7578.

  • 606

    Rasmussen T. (1980). Notes on the Biology of the Shipfouling Gooseneck Barnacle Conchoderma auritum Linnaeus 1776 (Cirripedia; Lepadomorpha). Biol. Mar.2, 3744.

  • 607

    Raupach M. J. Barco A. Steinke D. Beermann J. Laakmann S. Mohrbeck I. et al . (2015). The Application of DNA Barcodes for the Identification of Marine Crustaceans From the North Sea and Adjacent Regions. PloS One10 (9), E0139421. doi: 10.1371/journal.pone.0139421

  • 608

    Rech S. Borrell Pichs Y. J. Garcia-Vazquez E. (2018). Anthropogenic Marine Litter Composition in Coastal Areas may be a Predictor of Potentially Invasive Rafting Fauna. PloS One13 (1), e0191859. doi: 10.1371/journal.pone.0191859

  • 609

    Reddacliff G. (1988). “Crater Wounds in Marine Mammals” in Marine Mammals of Australasia: Field Biology and Captive Management, ed. AugeeM. L.(Sydney: Royal Society of New South Wales), 133134. doi: 10.7882/RZSNSW.1988.008

  • 610

    Reeb D. Best P. B. Kidson S. H. (2007). Structure of the Integument of Southern Right Whales, Eubalaena Australis. Anatom. Rec.290, 596613. doi: 10.1002/ar.20535

  • 611

    Rees G. (1953). A Record of Some Parasitic Worms From Whales in the Ross Sea Area. Parasitology43, 2734. doi: 10.1017/S003118200001831X

  • 612

    Renaud C. B. (2011). Lampreys of the World: An Annotated and Illustrated Catalogue of Lamprey Species Known to Date (Rome: Species Catalogue for Fishery Purposes, FAO).

  • 613

    Renaud C. B. (2019). “Family Petromyzontidae–Lampreys, Lamproies,” in Marine Fishes of Arctic CanadaCoadB. W.ReistJ. D. (Toronto/Buffalo/London: University of Toronto Press), 164167. doi: 10.3138/9781442667297-023

  • 614

    Renner M. Bell K. (2009). A White Killer Whale in the Central Aleutians. ARCTIC61 (1), 102. doi: 10.14430/arctic10

  • 615

    Resendes A. R. Juan-Sallés C. Almeria S. Majó N. Domingo M. Dubey J. P. (2002). Hepatic Sarcocystosis in a Striped Dolphin (Stenella Coeruleoalba) From the Spanish Mediterranean Coast. J. Parasitol.88 (1), 206209. doi: 10.1645/0022-3395(2002)088[0206:HSIASD]2.0.CO;2

  • 616

    Reyes J. C. Van Waerebeek K. (1995). Aspects of the Biology of Burmeister’s Porpoise From Peru. Rep. Int. Whal. Commn.16, 349364.

  • 617

    Ribeiro F. B. Carvalho V. L. Bevilaqua C. M. L. Bezerra L. E. A. (2010). First Record of Xenobalanus globicipitis (Cirripedia: Coronulidae) on Stenella Coeruleoalba (Cetacea: Delphinidae) in the Oligotrophic Waters of North-Eastern Brazil. Mar. Biodivers. Rec.3, 15. doi: 10.1017/S1755267209991151

  • 618

    Rice D. W. (1963). Progress Report on Biological Studies of the Larger Cetacea in the Waters Off California. Norsk Hvalfangst-Tid.52 (7), 181187.

  • 619

    Rice D. (1977). Synopsis of Biological Data on the Sei Whale and Bryde’s Whale in the Eastern North Pacific. Rep. Int. Whal. Commn.1, 333336.

  • 620

    Rice D. W. (1978). “Blue Whale,” in Marine Mammals of Eastern North Pacific and Arctic Waters. Ed. HaleyD. (Washington: Pacific Search Press), 3035.

  • 621

    Rice D. W. Caldwell D. K. (1961). Observations on the Habits of the Whale Sucker (Remilegia Australis). Norsk Hvalfangsttid.5, 181189.

  • 622

    Rice D. W. Wolman A. A. (1971). The Life History and Ecology of the Gray Whale (Eschrichtius Robustus). Am. Soc. Mammal.3, 142 pp. doi: 10.5962/bhl.title.39537

  • 623

    Richard J. (1936). Résultats Des Campagnes Scientifiques Accomplies Sur Son Yacht Par Albert 1er Prince Souverain De Monaco. Fascicule XCIV94, 3471.

  • 624

    Richard J. Neuville H. (1897). Sur Quelques Cétacés Observés Pendant Les Campagnes Du Yacht Princesse Alice Vol. 10 (Paris: Memoires de la Societeí Zoologique de France), 100109.

  • 625

    Ridgway S. H. Linder E. Mahoney K. A. Newman W. A. (1997). Grey Whale Barnacles Cryptolepas Rhachianecti Infest White Whales, Delphinapterus Leucas, Housed in San Diego Bay. Bull. Mar. Sci.61, 377385.

  • 626

    Risch D. Norris T. Curnock M. Friedlaender A. (2019). Common and Antarctic Minke Whales: Conservation Status and Future Research Directions. Front. Mar. Sci.6. doi: 10.3389/fmars.2019.00247

  • 627

    Rittmaster K. A. Bowles N. L. Mallon-Day S. G. R. B. Odell D. K. (1999). “Xenobalanus Barnacles on Tursiops Dorsal Fins in Beaufort, North Carolina,” in Wailea: 13th Biennial Conference on the Biology of Marine Mammals, 158 pp.

  • 628

    Rodríguez-López M. A. Mignucci-Giannoni A. A. (1999). A Stranded Pygmy Killer Whale (Feresa Attenuata) in Puerto Rico. Aquat. Mamm.25 (2), 119121.

  • 629

    Roest A. I. (1970). Kogia Simus and Other Cetaceans From San Luis Obispo County, California. J. Mammal.51 (2), 410417. doi: 10.2307/1378507

  • 630

    Román-Reyes J. C. Ortega-García S. Galván-Magaña F. Grano-Maldonado M. I. (2019). First Record of Pennella Filosa L. (Copepoda, Siphonostomatoida, Pennellidae) Parasitising the Yellowfin Tuna Thunnus Albacares (Bonnaterre 1788) From the Mexican Pacific Coast. Neotrop. Helminthol.13 (1), 109114. doi: 10.24039/rnh2019131628

  • 631

    Ronje E. I. Whitehead H. R. Piwetz S. Mullin K. D. (2018). Field Summary for Common Bottlenose Dolphin Surveys on the Texas, Gulf of Mexico Ciast 2014-2016. NOAA Southeast Fisheries Science Center reference document PRBD‐2018‐02. Pascagoula: US Department of Commerce.

  • 632

    Rose M. Hamon M. (1953). A Propos De Pennella Varians Steenstrup Et Lütken 1861, Parasite Des Branchies De Céphalopodes. Bull. Soc Hist. Nat. Afrique N.44, 172183.

  • 633

    Ross G. J. B. (1984). The Smaller Cetaceans of the South East Coast of Southern Africa. Ann. Cape Prov. Mus. Nat. Hist.15, 173410.

  • 634

    Ross G. J. Heinsohn G. E. Cockcroft V. G. (1994). “Humpback Dolphins Sousa Chinensis (Osbeck 1765), Sousa Plumbea (G. Cuvier 1829) and Sousa Teuszii (Kukenthal 1892),” in Handbook of Marine Mammals, vol. 5 . Eds. RidgwayS. H.HarrisonR. J. (London: Academic Press), 2342.

  • 635

    Rosso M. Ballardini M. Moulins A. Würtz M. (2011). Natural Markings of Cuvier's Beaked Whale Ziphius cavirostris in the Mediterranean Sea. Afr. J. Mar. Sci.33 (1), 4557. doi: 10.2989/1814232X.2011.572336

  • 636

    Rotstein D. S. Burdett L. G. McLellan W. Schwacke L. Rowles T. Terio K. A. et al . (2009). Lobomycosis in Offshore Bottle Nose Dolphins (Tursiops Truncatus), North Carolina. Emerging Infect. Dis.15, 588590. doi: 10.3201/eid1504.081358

  • 637

    Roussel de Vauzème D. M. (1834). Mémoire Sur Le Cyamus Ceti (Latr.) De La Classe Des Crustacés. Ann. Sci. Nat. Zoo.1, 239265. doi: 10.5962/bhl.part.25117

  • 638

    Rowntree V. (1983). Cyamids: The Louse That Moored. Whalewatcher. J. Am. Cetacean Soc17, 1417.

  • 639

    Rowntree V. J. (1996). Feeding, Distribution, and Reproductive Behavior of Cyamids (Crustacea: Amphipoda) Living on Humpback and Right Whales. Can. J. Zool.74, 103109. doi: 10.1139/z96-014

  • 640

    Sakai Y. Hayashi R. Murata K. Yamada T. Asakawa M. (2009). Records of Barnacle, Xenobalanus globicipitis Steenstrup 1851 and Whale Lice, Cyamus Sp. From a Wild Killer Whale Captured in the Western North Pacific, Off Kii Peninsula, Japan. Japanese J. Zoo Wildl. Med.14, 8184. doi: 10.5686/jjzwm.14.81

  • 641

    Sakai M. Hishii T. Takeda S. Kohshima S. (2006). Flipper Rubbing Behaviors in Wild Bottlenose Dolphins (Tursiops Aduncus). Mar. Mamm. Sci.22, 966978. doi: 10.1111/j.1748-7692.2006.00082.x

  • 642

    Samaras W. F. (1989). New Host Record for the Barnacle Cryptolepas rhachianecti Dall, 1872 (Balanomorpha: Coronulidae). Mar. Mamm. Sci.5, 8487. doi: 10.1111/j.1748-7692.1989.tb00216.x

  • 643

    Samarra I. P. F. Fennell A. Deecke F. B. Miller J. O. (2012). Persistence of Skin Marks on Killer Whales (Orcinus Orca) Caused by the Parasitic Sea Lamprey (Petromyzon Marinus). Iceland. Mar. Mamm. Sci.28, 395409. doi: 10.1111/j.1748-7692.2011.00486.x

  • 644

    Sanciangco M. D. Carpenter K. E. Betancur R. ,. R. (2016). Phylogenetic Placement of Enigmatic Percomorph Families (Teleostei: Percomorphaceae). Mol. Phylogenet. Evol.94 (PT B), 565576. doi: 10.1016/j.ympev.2015.10.006

  • 645

    Santos M. C. Sazima I. (2005). The Sharksucker (Echeneis Naucrates) Attached to a Tucuxi Dolphin (Sotalia Guianensis) in Estuarine Waters in South-Eastern Brazil. JMBA2-Biodivers. Rec., 1, 13. doi: 10.1017/S1755267205000746.

  • 646

    Sars G. O. (1866). “Beskrivelse Af En Ved Lofoten Indbjerget Erhval (Balaenoptera Musculus)” Forhandlinger I Videnskabs-Selskabet I Christiana. 280.

  • 647

    Sars G. O. (1880). Fortsatte Bidrag Til Kundskaben Om Vore Bardehvaler. Finnhvalen. Og ,Knölhvalen (Kristiania: Videnskabsselskabs Selskab ), 12.

  • 648

    Sars (1890-1895). An Account of the Crustacea of Norway, With Short Descriptions and Figures of All SpeciesChristiania: A. Cammermeyer., Vol. 1. 3711. doi: 10.5962/bhl.title.1164

  • 649

    Sars G. O. (1895). An Account of the Crustacea of Norway: Amphipoda Vol. 1 and 2 (Copenhagen: A. Cammermeyer).

  • 650

    Savage K. N. Burek-Huntington K. Wright S. K. Bryan A. L. Sheffield G. Webber M. et al . (2021). Stejneger's Beaked Whale Strandings in Alaska 1995–2020. Mar. Mamm. Sci.37, 843869. doi: 10.1111/mms.12780

  • 651

    Sazima I. Grossman A. (2006). Turtle Riders: Remoras on Marine Turtles in Southwest Atlantic. Neotrop. Ichthyol.4 (1), 123126. doi: 10.1590/S1679-62252006000100014

  • 652

    Scammon C. M. (1874). The Marine Mammals of the Northwestem Coast of North America (San Francisco: John M. Carmany).

  • 653

    Scarff J. E. (1986). Occurrence of the Barnacles Coronula Diadema, C. Reginae and Cetopirus Complanatus (Cirripedia) on Right Whales. Sci. Rep.Whales Res. Inst.37, 129153.

  • 654

    Scharff R. F. (1913). The Whale-Fishery in Ireland. Ir. Nat. J.22 (8), 145147.

  • 655

    Scheffer V. B. (1939). Organisms Collected From Whales in the Aleutian Islands. Murrelet20 (3), 6769. doi: 10.2307/3533790

  • 656

    Schell D. Rowntree V. Pfeiffer C. J. (2000). Stable-Isotope and Electron-Microscopic Evidence That Cyamids (Crustacea: Amphipoda) Feed on Whale Skin. Can. J. Zool.78 (5), 721727. doi: 10.1139/z99-249

  • 657

    Schiffer P. H. Herbig H. G. (2016). Endorsing Darwin: Global Biogeography of the Epipelagic Goose Barnacles Lepas Spp. (Cirripedia, Lepadomorpha) Proves Cryptic Speciation. Zool. J. Linn. Soc177 (3), 507525. doi: 10.1111/zoj.12373

  • 658

    Schmidt G. D. Roberts L. S. (2009). “Parasitic Crustaceans” in Foundations of Parasitology. Eds. SchmidtG. D.RobertsL. S. (New York: McGraw-Hill), 537559.

  • 659

    Schuchert P. (2021)World Hydrozoa Database. In: Obelia Dichotoma (Linnaeus 1758). Available at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=117386 (Accessed September 28, 2021).

  • 660

    Schuurmans-Stekhoven J. H. van Oorde-de Lint G. (1936). “Copepoda Parasitica,” in Grimpe Wagler, Tierwelt Der Nord- Und Ostsee. Liefg, 31.

  • 661

    Scordino J. J. Gosho M. Gearin P. J. Akmajian A. Calambokidis J. Wright N. (2017). Individual Gray Whale Use of Coastal Waters Off Northwest Washington During the Feeding Season 1984–2011: Implications for Management. J. Cetacean Res. Manage.16, 5769.

  • 662

    Sedlak-Weinstein E. (1991). Three New Records of Cyamids (Amphipoda) From Australian Cetaceans. Crustaceana60 (1), 90104. doi: 10.1163/156854091X00290

  • 663

    Sedlak-Weinstein E. (1992a). The Occurrence of a New Species of Isocyamus (Crustacea, Amphipoda) From Australian and Japanese Pilot Whales, With a Key to Species of Isocyamus. J. Nat. Hist.26, 937946. doi: 10.1080/00222939200770561

  • 664

    Sedlak-Weinstein E. (1992b). A New Species of Isocyamus (Amphipoda: Cyamidae) From Kogia Breviceps (De Blainville 1838) in Australian Waters. Sist. Parasitol.23, 16. doi: 10.1007/BF00008001

  • 665

    Seger J. Smith W. A. Perry J. J. Hunn J. Kaliszewska Z. A. Sala L. L. et al . (2010). Gene Genealogies Strongly Distorted by Weakly Interfering Mutations in Constant Environments. Genetics184 (2), 529545. doi: 10.1534/genetics.109.103556

  • 666

    Seilacher A. (2005). Whale Barnacles: Exaptational Access to a Forbidden Paradise. Paleobiology31, 2735. doi: 10.1666/0094-8373(2005)031[0027:WBEATA]2.0.CO;2

  • 667

    Sekiguchi K. Klages N. T. W. Best P. B. (1996). The Diet of Strap-Toothed Whales (Mesoplodon Layardii). J. Zool.239 (3), 453463. doi: 10.1111/j.1469-7998.1996.tb05935.x

  • 668

    Sekiguchi K. Klages N. Findlay K. (1993). Feeding Habits and Possible Movements of Southern Bottlenose Whales (Hyperodon Planifrons). Proc. NIPR Symp. Polar Biol.6, 8497.

  • 669

    Sergeant D. E. (1962). The Biology of the Pilot or Pothead Whale. Globicephala Melaena (Traill) in Newfoundland Waters. Bull. Fish. Res. Board Can.132, 84.

  • 670

    Sergeant D. E. Fisher H. D. (1957). The Smaller Cetacea of Eastern Canadian Waters. J. Fish. Res. Board Can.14 (1), 83115. doi: 10.1139/f57-003

  • 671

    Shane S. (1978). Suckerfish Attached to a Bottlenose Dolphin in Texas. J. Mammal.59 (2), 439440. doi: 10.2307/1379936

  • 672

    Sherchenko V. (1970). Puzzling White Scars on Whale Body. Priroda6, 7273. [In Russian].

  • 673

    Siciliano S. Cardoso J. Francisco A. De Souza S. P. Hauser-Davis R. A. Iwasa-Arai T. (2020). Epizoic Barnacle (Xenobalanus globicipitis) Infestations in Several Cetacean Species in South-Eastern Brazil. Mar. Biol. Res.16, 113. doi: 10.1080/17451000.2020.1783450

  • 674

    Silva S. Araújo M. J. Bao M. Mucientes G. Cobo F. (2014). The Haematophagous Feeding Stage of Anadromous Populations of Sea Lamprey Petromyzon Marinus: Low Host Selectivity and Wide Range of Habitats. Hydrobiologia734 (1), 187199. doi: 10.1007/s10750-014-1879-4

  • 675

    Silva-Brum I. N. (1985). “Primeira Ocorrência No Brasil De Duas Espécies Da Família Coronulidae Leach 1825 (Cirripedia),” in Resumos do In Campinas, Brazil, 55.

  • 676

    Silva S. Servia M. J. Vieira-Lanero R. Barca S. Cobo F. (2013). Life Cycle of the Sea Lamprey Petromyzon Marinus: Duration of and Growth in the Marine Life Stage. Aquat. Biol.18 (1), 5962. doi: 10.3354/ab00488

  • 677

    Silva D. Young R. F. Lavin A. O'Shea C. Murray E. (2020). Abundance and Seasonal Distribution of the Southern North Carolina Estuarine System Stock (USA) of Common Bottlenose Dolphins (Tursiops Truncatus). J. Cetacean Res. Manage.21 (1), 3343. doi: 10.47536/jcrm.v21i1.175

  • 678

    Silver M. R. Kawauchi H. Nozaki M. Sower S. A. (2004). Cloning and Analysis of the Lamprey GnRH-III cDNA From Eight Species of Lamprey Representing the Three Families of Petromyzoniformes. Gen. Comp. Endocrinol.139 (1), 8594. doi: 10.1016/j.ygcen.2004.07.011

  • 679

    Skaramuca D. Skaramuca B. Dulčić J. (2009). Record of a Live Sharksucker, Echeneis Naucrates (Osteichthyes: Echeneidae) From the South-Eastern Adriatic (Croatian Coast). Mar. Biodivers. Rec.2, e80. doi: 10.1017/s1755267209000694

  • 680

    Skerman T. M. (1958). Rates of Growth in Two Species of Lepas (Cirripedia). N. Z. J. Sci.1, 402411.

  • 681

    Skrjabin A. S. (1959). “New Helminth Species From Marine Mammals in the Pacific Ocean and Far-East Sea,” in Izvestiya Krimskovo Pedagogicheskogo Instituta M. V. Frunze, vol. 34. , 99118. [In Russian].

  • 682

    Slijper E. J. (1962). Whales (London: Hutchinson).

  • 683

    Smiddy P. (1986). Bottle-Nosed Whale Hyperdoon Ampullatus (Forster). Ir. Nat. J.22, 165.

  • 684

    Smiddy P. Berrow S. D. (1992). Humpback Whale Megaptera novaeangliae (Borowski). Ir. Nat. J.24 (4), 162.

  • 685

    Smit N. J. Bruce N. L. Hadfield K. A. (2014). Global Diversity of Fish Parasitic Isopod Crustaceans of the Family Cymothoidae. Int. J. Parasitol.: Parasites Wildl.3 (2), 188197. doi: 10.1016/j.ijppaw.2014.03.004

  • 686

    Smit N. J. Bruce N. L. Hadfield K. A. (2019). Introduction to Parasitic Crustacea: State of Knowledge and Future Trends. Zool. Monogr.30, 16. doi: 10.1007/978-3-030-17385-2_1

  • 687

    Smyth J. D. (1962). Introduction to Animal Parasitology (London: The English Universities Press Ltd).

  • 688

    Sokolov V. E. Arsen'ev V. A. (2006). Baleen Whales of Russia and Adjacent Regions (Washington, DC: Science Publishers).

  • 689

    Soto J. M. R. (2001). Annotated Systematic Checklist and Bibliography of the Coastal and Oceanic Fauna of Brazil. I. Sharks. Mare Magnum1 (1), 51120.

  • 690

    Souza S. P. Siciliano S. Cuenca S. Sanctis B. (2005). A True’s Beaked Whale (Mesoplodon Mirus) on the Coast of Brazil: Adding a New Beaked Whale Species to the Western Tropical Atlantic and South America. Lat. Am. J. Aquat. Res.4 (2), 129136. doi: 10.5597/lajam00077

  • 691

    Spaul E. A. (1964). Deformity in the Lower Jaw of the Sperm Whale (Physeter Catodon). Proc. Zool. Soc Lond.142, 391395. doi: 10.1111/j.1469-7998.1964.tb04505.x

  • 692

    Spice E. K. Whitesel T. A. McFarlane C. T. Docker M. F. (2011). Characterization of 12 Microsatellite Loci for the Pacific Lamprey, Entosphenus Tridentatus (Petromyzontidae), and Cross-Amplification in Five Other Lamprey Species. Genet. Mol. Res.10 (4), 32463250. doi: 10.4238/2011.December.22.2

  • 693

    Spivey H. R. (1977). Those Tenacious Travelers of Florida’s Atlantic Coast. Florida Nat.50, 610.

  • 694

    Spivey H. R. (1980). Occurrence of the Balanamorph Barnacle Xenobalanus globicipitis Steenstrup 1851 (Coronulidae) on the Atlantic Bottlenosed Dolphin, Tursiops Truncatus in the Gulf of Mexico. Florida Sci.43 (4), 292293.

  • 695

    Steenstrup J. J. S. (1852). “Om Xenobalanus globicipitis, En Ny Cirriped-Slaegt Af Coronula Familien,” in Vidensk. Medd. Dan. Naturh. Foren., 6264.

  • 696

    Steenstrup J. J. S. Lütken C. F. (1861). Bidrag Til Kundskab Om Det Aabne Havs Snyltekrebs Og Lernæer Samt Om Nogle Andre Nye Eller Hidtil Kun Ufuldstændigt Kjendte Parasitiske Copepoder. Kongelige Danske Videnskabernes Selskabs Skrifter, Naturhistorisk Og Mathematisk Afdeling. Kjöbenhavn5)5, 343432. doi: 10.5962/bhl.title.59539

  • 697

    Stephensen K. (1938). Cirripedia (Including Rhizocephala). Zoology Iceland3, 111.

  • 698

    Stephensen K. (1940). Parasitic and Semiparasitic Copepoda. Zool Iceland34, 24.

  • 699

    Stephensen K. (1942). The Amphipoda of Norway and Spitzbergen With Adjacent Waters. Fasx. IY. Tromso Mus. Skrift.3 (4), 363526.

  • 700

    Stimmelmayr R. Gulland F. (2020). Gray Whale (Eschrichtius Robustus) Health and Disease: Review and Future Directions. Front. Mar. Sci.7. doi: 10.3389/fmars.2020.588820

  • 701

    Stock J. H. (1973a). Whale-Lice (Amphipoda: Cyamidae) in Dutch Waters. Bull. Zool. Mus. Univ. Amsterdam3 (12), 7377.

  • 702

    Stock J. H. (1973b). Een Bruinvis Met Luizen. Levende Natuur76, 107109.

  • 703

    Stock J. H. (1977). Whale-Lice (Amphipoda, Cyamidae) on Lagenorhynchus Albirostris in Dutch Waters. Crustaceana32 (2), 206. doi: 10.1163/156854077X00601

  • 704

    Stubbings H. G. (1965). West African Cirripedia in the Collection of the Institut Français D’afrique Noire, Dakar, Senegal. Bull. l’Institut Fran. d’Afrique Noire27, 876907.

  • 705

    Sullivan R. Houck W. (1979). Sightings and Strandings of Cetaceans From Northern California. J. Mamm.60 (4), 828833. doi: 10.2307/1380200

  • 706

    Suyama S. Miyamoto H. Fuji T. Tamura T. Shiozaki K. Ohshimo S. et al . (2021a). Infection by the parasitic copepod Pennella sp. induces mortality in the Pacific saury Cololabis saira. Fish. Sci.87 (3), 187202. doi: 10.1007/s12562-020-01490-6

  • 707

    Suyama S. Yanagimoto T. Nakai K. Tamura T. Shiozaki K. Ohshimo S. et al . (2021b). A Taxonomic Revision of Pennella Oken, 1815 based on morphology and genetics (Copepoda: Siphonostomatoida: Pennellidae). J. Crust. Biol.41 (3), ruab040. doi: 10.1093/jcbiol/ruab040

  • 708

    Swartz S. L. (1981). Cleaning Symbiosis Between Topsmelt, Atherinops Affinis, and Gray Whale, Eschrichtius Robustus, in Laguna San Ignacio, Baja California Sur. Mexico. F. Bull.79, 360.

  • 709

    Symons H. W. Weston R. D. (1958). Studies on the Humpback Whale (Megaptera Nodosa) in the Bellinghausen Sea. Norsk Hvalfangsttid.47 (2), 5381.

  • 710

    Tørud B. Håstein T. (2008). Skin Lesions in Fish: Causes and Solutions. Acta Vet. Scand.50, S7. doi: 10.1186/1751-0147-50-S1-S7

  • 711

    Tajima Y. Maeda K. Yamada T. K. (2015). Pathological Findings and Probable Causes of the Death of Stejneger’s Beaked Whales (Mesoplodon Stejnegeri) Stranded in Japan From 1999 and 2011. J. Vet. Med. Sci.13, 454. doi: 10.1292/jvms.13-0454

  • 712

    Takeda M. Ogino M. (2005). Record of a Whale Louse, Cyamus Scammoni Dall (Crustacea: Amphipoda: Cyamidae), From the Gray Whale Strayed Into Tokyo Bay, the Pacific Coast of Japan. Bull. Natn. Sci. Mus.31 (4), 151156.

  • 713

    Takemoto R. M. Luque J. L. (2002). Parasitic Copepods on Oligoplites Spp. (Osteichthyes, Carangidae) From the Brazilian Coastal Zone, With the Redescription of Tuxophorus Caligodes Wilson 1908 (Siphonostomatoida, Tuxophoridae). Acta Scientiarum. Biol. Sci.24 (2), 481487.

  • 714

    Tasmanian Museum and Art Gallery (2020) Tasmanian Museum and Art Gallery Provider for OZCAM. Available at: https://www.gbif.org/occurrence/1806052502 (Accessed May 14, 2021).

  • 715

    Taylor L. O’Dea A. Bralower T. Finnegan S. (2019). Isotopes From Fossil Coronulid Barnacle Shells Record Evidence of Migration in Multiple Pleistocene Whale Populations. Proc. Natl. Acad. Sci.116 (15), 73777381. doi: 10.1073/pnas.1808759116

  • 716

    Ten S. Pascual L. Pérez-Gabaldón M. I. Tomás J. Domènech F. Aznar F. J. (2019). Epibiotic Barnacles of Sea Turtles as Indicators of Habitat Use and Fishery Interactions: An Analysis of Juvenile Loggerhead Sea Turtles, Caretta Caretta, in the Western Mediterranean. Ecol. Indic.107, 105672. doi: 10.1016/j.ecolind.2019.105672

  • 717

    Terasawa F. Yamagami T. Kitamura M. Fujimoto A. (1997). A Pygmy Killer Whale (Feresa Attenuata) Stranded at Sagami Bay, Japan. Aquat. Mamm.23, 6972.

  • 718

    Terwilliger N. B. Ryan M. C. (2006). Functional and Phylogenetic Analyses of Phenoloxidases From Brachyuran (Cancer Magister) and Branchiopod (Artemia Franciscana, Triops Longicaudatus) Crustaceans. Biol. Bull.210 (1), 3850. doi: 10.2307/4134535

  • 719

    Thiyagarajan V. Harder T. Qian P. Y. (2003). Combined Effects of Temperature and Salinity on Larval Development and Attachment of the Subtidal Barnacle Balanus Trigonus Darwin. J. Exp. Mar. Bio. Ecol.287 (2), 223236. doi: 10.1016/S0022-0981(02)00570-1

  • 720

    Tomilin A. G. (1957). Mammals of the SSSR and Adjacent Countries. Mammals of Eastern Europe and Adjacent Countries. Izdatel’stvo Akademi Nauk SSSR (Jerusalem: Israel Program for Scientific Translations). [In Russian].

  • 721

    Tomioka S. Kado R. Kakui K. Sato M. (2020). First Record of Conchoderma auritum (Linnaeus 1767) (Crustacea: Cirripedia: Lepadidae) From Rishiri Island. Rishiri Stud.39, 710.

  • 722

    Tonay A. M. Dede A. (2013). First Stranding Record of a Harbour Porpoise (Phocoena Phocoena) in the Southern Aegean Sea. Growth19 (1), 132137.

  • 723

    Toth-Brown J. Hohn A. A. (2007). Occurrence of the Barnacle, Xenobalanus globicipitis, on Coastal Bottlenose Dolphins (Tursiops Truncatus) in New Jersey. Crustaceana80 (10), 12711279. doi: 10.1163/156854007782321137

  • 724

    Toth J. L. Hohn A. A. Able K. W. Gorgone A. M. (2012). Defining Bottlenose Dolphin (Tursiops Truncatus) Stocks Based on Environmental, Physical, and Behavioral Characteristics. Mar. Mamm. Sci.28 (3), 461478. doi: 10.1111/j.1748-7692.2011.00497.x

  • 725

    Towers J. R. Mcmillan C. J. Malleson M. Hildering J. Ford J. K. B. Ellis G. M. (2013). Seasonal Movements and Ecological Markers as Evidence for Migration of Common Minke Whales Photo-Identified in the Eastern North Pacific. J. Cetacean Res. Manage.13, 221229.

  • 726

    Trilles J. P. Rameshkumar G. Ravichandran S. (2013). Nerocila Species (Crustacea, Isopoda, Cymothoidae) From Indian Marine Fishes. Parasitol. Res.112 (3), 12731286. doi: 10.1007/s00436-012-3263-5

  • 727

    True F. W. (1890). Observations of the Life History of the Bottlenose Porpoise. Proc. U. S. Natl. Mus.13, 197203. doi: 10.5479/si.00963801.13-812.197

  • 728

    Tsikhon-Lukanina V. A. Soldatova I. N. Kuznetsova I. A. Il'in I. I. (1977). Macrofouling Community in the Strait of Tunisia (Sicily). Oceanology16, 519522.

  • 729

    Turner W. (1905). On Pennella Balænopteræ: A Crustacean, Parasitic on a Finner Whale, Balaenoptera Musculus. Earth. Environ. Sci. Trans. R. Soc Edinb.41 (2), 409434. doi: 10.1017/S0080456800034487

  • 730

    Uchida A. (1998). Prevalence of Parasites and Histopathology of Parasitisation in Minke Whales (Balaenoptera Acutorostrata) From the Western North Pacific Ocean and the Southern Sea of Okhotsk. Rep. Int. Whal. Commn.48, 465479. doi: 10.1016/S1383-5769(98)81064-7

  • 731

    Uchida A. Araki J. (2000). Ectoparasites and Endoparasites in the Minke Whale (Balaenoptera Acutorostrata) From the North-Western Pacific Ocean. J. Japan Vet. Med. Assoc.53 (2), 8588. doi: 10.12935/jvma1951.53.85

  • 732

    Ueda K. (2020) Inaturalist Research-Grade Observations (iNaturalist.org). Available at: https://www.gbif.org/occurrence/2563485235 (Accessed June 4, 2021). doi: 10.3897/biss.4.59133

  • 733

    Urian K. W. Kaufmann R. Waples D. M. Read A. J. (2019). The Prevalence of Ectoparasitic Barnacles Discriminates Stocks of Atlantic Common Bottlenose Dolphins (Tursiops Truncatus) at Risk of Entanglement in Coastal Gill Net Fisheries. Mar. Mamm. Sci.35 (1), 290299. doi: 10.1111/mms.12522

  • 734

    Van Bree P. J. H. (1971). The Rabbit-Eared Barnacle, Conchoderma auritum, on the Teeth of the Dolphin Stenella Frontalis. Z. f. Saugetierkunde36 (5), 316317.

  • 735

    Van Bree P. J. H. Smeenk C. (1978). Strandingen Van Cetacea Op De Nederlandse Kust in 1976 En 1977. Lutra20 (1-3), 1318.

  • 736

    Van Bressem M. Raga A. Di Guardo G. Jepson P. Duignan P. Siebert U. et al . (2009). Emerging Infectious Diseases in Cetaceans Worldwide and the Possible Role of Environmental Stressors. Dis. Aquat. Org.86, 143157. doi: 10.3354/dao02101

  • 737

    Van Oorde-de Lint G. Schuurmans-Stekhoven J. H. . (2009). Copepoda parasitica. Tierwelt der Nord- und OstseeGrimpeG.WaglerE. (Leipzig: Geest & Portig)

  • 738

    Van Waerebeek K. Hazevoet C. J. López Suarez P. Rodrigues M. S. D. Gatt G. (2008). Preliminary Findings on the Mass Stranding of Melon-Headed Whale Peponocephala Electra on Boavista Island in November 2007, With Notes on Other Cetaceans From the Cape Verde Islands. Technical Report (Fondation Internationale du Banc d’Arguin).

  • 739

    Van Waerebeek K. Reyes J. C. Alfaro J. (1993). Helminth Parasites and Phoronts of Dusky Dolphins Lagenorhynchus Obscurus (Gray 1828) From Peru. Aquat. Mamm.19, 159159.

  • 740

    Van Waerebeek K. Waerebeek K. V. Reyes J. C. Read A. J. McKinnon J. S. (1990). “Preliminary Observations of Bottlenose Dolphins From the Pacific Coast of South America,” in The Bottlenose Dolphin. Eds. LeatherwoodS.ReevesR. (San Diego: Academic Press). doi: 10.1016/B978-0-12-440280-5.50011-1

  • 741

    Vargas-Bravo M. H. Elorriaga-Verplancken F. R. Olivos-Ortiz A. Morales-Guerrero B. Lin-Cabello M. A. Ortega-Ortiz C. D. (2020). Ecological Aspects of Killer Whales From the Mexican Central Pacific Coast: Revealing a New Ecotype in the Eastern Tropical Pacific. Mar. Mamm. Sci.37, 116. doi: 10.1111/mms.12748

  • 742

    Vecchione A. (1994). Pennella Parasite in Stenella Coeruleoalba. Italian Marine Ecosystem of the Coast of Latium (Seminario Internazionale di Studi di Ecosistema Marino 96-98).

  • 743

    Vecchione A. Aznar F. J. (2014). The Mesoparasitic Copepod Pennella balaenopterae and its Significance as a Visible Indicator of Health Status in Dolphins (Delphinidae): A Review. J. Mar. Anim. Ecol.7 (4), 411.

  • 744

    Verrill A. E. (1902). The Bermuda Islands (New Haven, Ct: Published by the author).

  • 745

    Vervoort W. Tranter D. (1961). Balaenophilus Unisetus P.O.C. Aurivillius (Copepoda Harpacticoida) From the Southern Hemisphere. Crustaceana3 (1), 7084. doi: 10.1163/156854061X00545

  • 746

    Vidal O. Brownell R. L. Jr. Findley L. T. (1999). “Vaquita,” in Handbook of Marine Mammals. Eds. RidgwayS. H.HarrisonR. J. (London: Academic Press).

  • 747

    Visser I. N. (1999). Propeller Scars on and Known Home Range of Two Orca (Orcinus Orca) in New Zealand Waters. N. Z. J. Mar. Freshw. Res.33 (4), 635642. doi: 10.1080/00288330.1999.9516906

  • 748

    Visser I. N. Cooper T. Grimm H. (2020). Duration of Pseudo-Stalked Barnacles (Xenobalanus globicipitis) on a New Zealand Pelagic Ecotype Orca (Orcinus Orca), With Comments on Cookie Cutter Shark Bite Marks (Isistius Sp.); can They be Used as Biological Tags? Biod. J.11 (4), 10671086. doi: 10.31396/biodiv.jour.2020.11.4.1067.1086

  • 749

    Visser I. N. Zaeschmar J. Halliday J. Abraham A. Ball P. Bradley R. et al . (2010). First Record of Predation on False Killer Whales (Pseudorca Crassidens) by Killer Whales (Orcinus Orca). Aquat. Mamm.36 (2), 195204. doi: 10.1578/AM.36.2.2010.195

  • 750

    Vollmer N. Ashe E. Brownell R. Cipriano F. Mead J. Reeves R. et al . (2010). Taxonomic revision of the dolphin genus Lagenorhynchus. Mar. Mamm. Sci.36(3), 9571057. doi: 10.1111/mms.12573

  • 751

    Von Duyke A. Stimmelmayr R. Sheffield G. Sformo T. Givens G. George J. (2016). Prevalence and Abundance of Cyamid “Whale Lice” (Cyamus Ceti) on Subsistence Harvested Bowhead Whales (Balaena Mysticetus). ARCTIC69 (4), 331. doi: 10.14430/arctic4593

  • 752

    Vosseler J. (1889). Amphipoden Und Isopoden Von Spitzbergen. Arch. Naturgesch.55, 151162.

  • 753

    Wada S. Oishi M. Yamada T. K. (2003). A Newly Discovered Species of Living Baleen Whale. Nature426, 278281. doi: 10.1038/nature02103

  • 754

    Walker L. M. (1981). Reproductive Biology and Development of a Marine Harpacticoid Copepod Reared in the Laboratory. J. Crust. Biol.1 (3), 376388. doi: 10.2307/1547969

  • 755

    Walker W. A. Hanson M. B. (1999). Biological Observations on Stejneger’s Beaked Whale, Mesoplodon Stejnegeri, From Strandings on Adak Alaska. Mar. Mamm. Sci.15 (4), 13141329. doi: 10.1111/j.1748-7692.1999.tb00893.x

  • 756

    Wallace B. (1977). Cover Photo. Sea Front.23, (3).

  • 757

    Waller G. N. H. (1989). Two New Species of Whale Lice (Cyamidae) From the Ziphioid Whale Berardius Bairdii. Invest. Cet.22, 292297.

  • 758

    Walter T. C. Boxshall G. (2020) World of Copepods Database. Caligidae Burmeister. Available at: http://www.marinespecies.org/aphia.php?p-taxdetails&id=135566 (Accessed June 3, 2021).

  • 759

    Wardle W. J. Haney T. A. Worthy G. A. J. (2000). New Host Record for the Whale Louse Isocyamus delphinii (Amphipoda, Cyamidae). Crustaceana73, 639641. doi: 10.1163/156854000504615

  • 760

    Watson A. Gee L. E. (2005). Laryngeal Displacement and Asphyxiation by a Beheaded Sheepshead (Archosargus Probatocephalus) in a Bottlenose Dolphin (Tursiops Truncatus). Aquat. Mamm.31, 447452. doi: 10.1578/AM.31.4.2005.447

  • 761

    Watson A. G. Stein L. E. Marshall C. Henry G. A. (1994). Polydactyly in a Bottlenose Dolphin, Tursiops Truncatus. Mar. Mamm. Sci.10 (1), 93100. doi: 10.1111/j.1748-7692.1994.tb00393.x

  • 762

    Wegner N. C. Cartamil D. P. (2012). Effects of Prolonged Entanglement in Discarded Fishing Gear With Substantive Biofouling on the Health and Behavior of an Adult Shortfin Mako Shark, Isurus Oxyrinchus. Mar. Poll. Bull.64 (2), 391394. doi: 10.1016/j.marpolbul.2011.11.017

  • 763

    Weir C. R. (2010). Cetaceans Observed in the Coastal Waters of Namibe Province, Angola, During Summer and Winter 2008. Mar. Biodivers. Rec.3, e27. doi: 10.1017/S1755267210000230

  • 764

    Welch J. (2017). Mouthline Pigmentation Loss and Fisheries Associated Injuries of Rough-Toothed Dolphins (Steno bredanensis) in Hawaii. [Ph.D. Thesis] (Chicago (IL: Evergreen State College).

  • 765

    Weller D. Würsig B. Bradford A. L. Burdin A. M. Blokhin A. S. Minakuchi H. et al . (1999). Gray Whales (Eschrichtius Robustus) Off Sakhalin Island, Russia: Seasonal and Annual Patterns of Occurrence. Mar. Mamm. Sci.15, 12081227. doi: 10.1111/j.1748-7692.1999.tb00886.x

  • 766

    Wellington G. M. Anderson S. (1978). Surface Feeding by a Juvenile Gray Whale, Eschrichtius Robustus. Fish. Bull.76, 290293.

  • 767

    Weltner W. (1897). Verzeichnis Der Bisher Beschriebene Recenten Cirripedienarten. Mit Angabe Der Im Berliner Museum Vorhandenen Species Und Ihrer Fundorte. Archiv fuür Naturgeschichte63, 227280.

  • 768

    Werner J. W.E. (1967). The Distribution and Ecology of the Barnacle Balanus Trigonus. Bull. Mar. Sci.17 (1), 6484.

  • 769

    Whales and Dolphins Package - CW Azores (2021). Available at: https://www.cwazores.com/whales-and-dolphins-package (Accessed August 16, 2021).

  • 770

    Wheeler E. McIntosh H. (2018) Royal BC Museum - Invertebrates Collection. Version 1.1. Royal British Columbia Museum. Available at: https://www.gbif.org/occurrence/1898261060 (Accessed May 4, 2021).

  • 771

    Whitehead T. O. Rollinson D. P. Reisinger R. R. (2014). Pseudostalked Barnacles Xenobalanus globicipitis Attached to Killer Whales Orcinus Orca in South African Waters. Mar. Biodivers. Rec.45, 873876. doi: 10.1007/s12526-014-0296-2

  • 772

    Whiteman N. K. Parker P. G. (2005). Using Parasites to Infer Host Population History: A New Rationale for Parasite Conservation. Animal Conservation Forum. Anim. Conserv.8(2), 175181. doi: 10.1017/S1367943005001915

  • 773

    Widder E. A. A. (1998). Predatory Use of Counter Illumination by the Squaloid Shark, Isistius Brasiliensis. Environ. Biol. Fishes53, 267273. doi: 10.1023/A:1007498915860

  • 774

    Williams J. E.H. (1978). Conchoderma Virgatum (Spengler) (Cirripedia, Thoracica) in Association With Dinemoura Latifolia (Steenstrup and Lutken) (Copepoda, Caligidea), a Parasite of the Shortfin Mako, Isurus Oxyrhynchus Rafinesque (Pisces, Chondrichthyes). Crustaceana34, 109111. doi: 10.1163/156854078X00655

  • 775

    Williams E. H. Bunkley-Williams L. (2019). “Life Cycle and Life History Strategies of Parasitic Crustacea,” in Parasitic Crustacea (Cham: Springer), 179266. doi: 10.1007/978-3-030-17385-2_5

  • 776

    Williams E. H. Jr. Williams L. B. (1986). The First Association of Conchoderma Virgatum (Spengler) (Cirripedia: Thoracica) With a Euryphodid Copepod in the Mouth of a Fish. Galaxea5, 209211.

  • 777

    Wilson C. B. (1905). North American Parasitic Copepods Belonging to the Family Caligidae, 1: The Caliginae. Proc. U. S. Nat. Mus.28, 479672. doi: 10.5479/si.00963801.28-1404.479

  • 778

    Wingert N. Milmann L. Baumgarten M. Danilewicz D. Sazima I. Ott P. H. (2021). Relationships Between Common Bottlenose Dolphins (Tursiops Truncatus) and Whalesuckers (Remora Australis) at a Remote Archipelago in the Equatorial Atlantic Ocean. Aquat. Mamm.47 (6), 585598. doi: 10.1578/AM.47.6.2021.585

  • 779

    Wirtz P. Araujo R. Southward A. J. (2006). Cirripedia of Madeira. Helgoland Mar. Res.60, 207212. doi: 10.1007/s10152-006-0036-5

  • 780

    Wolff T. (1958). On the Rare Whale-Louse Platycyamus Thompsoni (Gosse) (Amphipoda, Cyamidae). Vidensk. Medd. Dansk naturh. Foren.120, 114.

  • 781

    Wolff T. (1960). Rankefodderne Conchoderma Og Coronula Pa Hvaler. Flora Fauna66 (1), 18.

  • 782

    Woodard J. C. Zam S. G. Caldwell D. K. Caldwell M. C. (1969). Some Parasitic Diseases of Dolphins. Pathol. Vet.6, 257272. doi: 10.1177/030098586900600307

  • 783

    Woodward B. L. Winn J. P. (2006). Apparent Lateralized Behavior in Gray Whales Feeding Off the Central British Columbia Coast. Mar. Mamm. Sci.22 (1), 6473. doi: 10.1111/j.1748-7692.2006.00006.x

  • 784

    Worm O. (1655). Museum Wormianum. Amstelodami, Apud Ludouicum & Danielem Elzeririos.

  • 785

    WoRMS - World Register of Marine Species (2021) Odontobius Ceti De Vauzème. Available at: https://www.marinespecies.org/aphia.php?p=taxdetails&id=229481 (Accessed September 16, 2021).

  • 786

    Yamaguchi R. Nakaya K. (1997). Fukuoka Megamouth, a Probable Victim of the Cookiecutter Shark. Biology of the Megamouth Shark (Tokyo: Tokai University Press), 171.

  • 787

    Yamato S. Yusa Y. Tanase H. (1996). Distribution of Two Species of Conchoderma (Cirripedia: Thoracica) Over the Body of a Sea Snake, Laticauda Semifasciata (Reinwardt), From the Kii Peninsula, Southwestern Japan. Publ. Seto Mar. Biol. Lab.37 (3-6), 337343. doi: 10.5134/176259

  • 788

    Yamazaki Y. Yokoyama R. Nishida M. Goto A. (2006). Taxonomy and Molecular Phylogeny of Lethenteron Lampreys in Eastern Eurasia. J. Fish Biol.68 (SUPPL. B), 251269. doi: 10.1111/j.0022-1112.2006.01070.x

  • 789

    Young P. S. (1991). The Superfamily Coronuloidea Leach (Cirripedia, Balanomorpha) From the Brazilian Coast, With Redescription of Stomatolepas Species. Crustaceana61, 190212. doi: 10.1163/156854091X00678

  • 790

    Yusa Y. Yoshikawa M. Kitaura J. Kawane M. Ozaki Y. Yamato S. et al . (2012). Adaptive Evolution of Sexual Systems in Pedunculate Barnacles. Proc. Biol. Sci.279 (1730), 959966. doi: 10.1098/rspb.2011.1554

  • 791

    Zenkovich (Senkowitsch) B. A. (1956). Jagd Aud Meeresriesen Rund Um Die Welt Auf Walfang (Leipzig: F. A. Brockhaus Verlag).

  • 792

    Zettler M. L. (2021). An Example for Transatlantic Hitchhiking by Macrozoobenthic Organisms With a Research Vessel. Helgoland Mar. Res.75 (1), 17. doi: 10.1186/s10152-021-00549-w

  • 793

    Zintzen V. Roberts C. D. Anderson M. J. Steward A. L. Struthers C. D. Harvey E. S. (2011). Hagfish Predatory Behavior and Slime Defence Mechanism. Sci. Rep.1, 131. doi: 10.1038/srep00131

  • 794

    Zullo V. A. (1963). A Preliminary Report on the Systematics and Distribution of Barnacles (Cirripedia) of the Cape Cod Region. Massachusetts and Ecology Program, Marine Biological Laboratory, Woods Hole, Massachusetts Contribution, Vol. 3. 133.

Summary

Keywords

epibiotic, fauna, cetacean, indicator, systematic review, checklist

Citation

Ten S, Raga JA and Aznar FJ (2022) Epibiotic Fauna on Cetaceans Worldwide: A Systematic Review of Records and Indicator Potential. Front. Mar. Sci. 9:846558. doi: 10.3389/fmars.2022.846558

Received

31 December 2021

Accepted

19 April 2022

Published

22 July 2022

Volume

9 - 2022

Edited by

Roksana Majewska, North-West University, South Africa

Reviewed by

Kristina Lehnert, University of Veterinary Medicine Hannover, Germany; Tammy Iwasa-Arai, State University of Campinas, Brazil

Updates

Copyright

*Correspondence: S. Ten,

This article was submitted to Marine Biology, a section of the journal Frontiers in Marine Science

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Figures

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics