MINI REVIEW article

Front. Mar. Sci., 30 March 2022

Sec. Marine Fisheries, Aquaculture and Living Resources

Volume 9 - 2022 | https://doi.org/10.3389/fmars.2022.864165

Recent Trends in Live Feeds for Marine Larviculture: A Mini Review

  • 1. Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan

  • 2. Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan

  • 3. Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan

  • 4. Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan

  • 5. Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

  • 6. Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan

  • 7. Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan

  • 8. Université de Lille, CNRS, Université du Littoral Côte d’Opale, IRD, UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Station Marine de Wimereux, Lille, France

Article metrics

View details

44

Citations

12k

Views

2,9k

Downloads

Abstract

In marine larviculture, farmed larvae mainly rely on the alimentation of a group of small-sized phytoplankton and zooplankton referred to as live feed. Under the diversifying demands of human consumption and ornamental aquarium industry, new species of live feed and their innovative production methods are essential focuses for sustainable larviculture of many emerging fish and invertebrate species. The selection of proper live feed for larval feeding is based on several parameters, such as size, morphology, nutritional value, stock density, and growth rate. This review aims to highlight the biological characteristics, production approach, common larviculture applications as well as recent innovations in the aquaculture technology of live feed organisms (microalgae, ciliated protists, rotifer, Artemia, copepod, and others).

Introduction

The percentage of world aquaculture production over the total fishery resource has increased from 14.6% in 1986 to 46% in 2018 (FAO, 2020). Although aquaculture is a fast-growing industry, one of the bottlenecks is proper rearing of the early life stages of many farmed fish and invertebrate species (Hu et al., 2018; Gallardo et al., 2022). The significant difficulty is the first feeding at larval weaning stage. When larvae deplete yolk reserves and experience transition from endogenous to exogenous feeding, they do not benefit from a well-developed gastrointestinal tract to efficiently digest the formulated diets (Infante and Cahu, 2001; Yúfera and Darias, 2007). The young larvae have limited capacity of predation (detection and capture) due to its immature jaw, muscle, and optical developments (Hu et al., 2018). Moreover, the specific larval feeding behaviors and nutritional requirements should be considered when selecting suitable first feeding ingredients to achieve a successful larviculture production (Rønnestad et al., 2013; Mejri et al., 2021). Contrary to formulated diets, motile and viable phytoplankton and zooplankton provide more bioavailable nutrients and trigger higher predatory responses, and have been recognized as promising exogenous nutrients for marine larvae (Conceição et al., 2010; Nielsen et al., 2017; Kandathil Radhakrishnan et al., 2020). These dietary planktons could live with the farmed larvae in the rearing system, and be ingested by the larvae whenever desire, are thus referred as live feeds.

Most emerging species in marine aquaculture and aquarium industries have a sensitive and small-mouthed larval stage, and their larviculture are very challenging due to a lack of appropriate first feeding protocols. It is of a crucial interest to enhance diversification and innovation within live feed production programs to advance the fast-growing marine larviculture industry. Consequently, the aquaculture technologies of live feed productions are a focus point worldwide (Hansen and Møller, 2021). Here we review recent trends of live feed production at laboratory and industrial scales and discuss challenges and perspectives of its applications.

Microalgae

Microalgae plays a fundamental role in aquatic food webs by converting solar energy into bioavailable organic compounds and trophic resources. These micro-sized autotrophs are sustainable food item for aquaculture (Hemaiswarya et al., 2011), and are used as live feeds for several marine organisms such as bivalves (Tahir and Ransangan, 2021; Hassan et al., 2022), zooplankton (Pan et al., 2018; Dayras et al., 2021), larvae of crustacean (Sharawy et al., 2020; Sandeep et al., 2021), and echinoderm (Militz et al., 2018; Gomes et al., 2021). In marine hatcheries, the usage of microalgae could be categorized in three scenarios: (i) direct diet to provide nutrients to early developmental stages (Camus et al., 2021; Dayras et al., 2021); (ii) natural enrichment ingredients to zooplankton live feed organisms (Fu et al., 2021); (iii) water conditioners: microalgae are added to create “green water” which conditions water quality, reduces bacterial loads, increases visual contrast, and prey detection (Basford et al., 2021). Based on a variety of microalgal characteristics (Table 1) several aspects should be considered in applications: (i) cell size: that should be compatible to the ingestion capacities of the larvae; (ii) cell structure: property of cell walls or skeletons (e.g., cellulose, SiO2, or CaCO3) could affect the efficiency of ingestion and digestion; (iii) nutritional profile: content (actual amount) and composition (percentage) of various bioactive nutrients should be taken into account according to the nutritional requirements of their consumers (Borowitzka, 2013; Pan et al., 2018; Dayras et al., 2021). In general, the production of marine microalgal Chlorophytes (e.g., Nannochloropsis sp. and Tetraselmis sp.) can easily be sustained at high cell concentration and wide environmental conditions. Nevertheless, the thick cellulose cell wall and nutritional deficiency [i.e., low docosahexaenoic acid (DHA), 22: 6n-3, DHA or eicosapentaenoic acid (EPA), 20: 5n-3, EPA] hinder their applicability as live feed for some phytoplankton feeders (Pan et al., 2014). On the contrary, haptophyte and cryptophyte species (e.g., Isochrysis sp., Tisochrysis sp., and Rhodomonas sp.) provide superior nutritional values and higher digestibility due to their balanced polyunsaturated fatty acid (PUFA) profiles and soft cell structures (Latsos et al., 2020; Mai et al., 2021). Unfortunately, those microalgal species are relatively fragile and sensitive toward environmental stressors (e.g., temperature, salinity, and pH variations), and require more time and experienced labor to achieve successful productions. Recent studies focused on how to technically enhance their cell densities by manipulating the culture environments at automated regulations. In the past decade, photobioreactors (PBR) have been developed to produce microalgal biomass for biodiesel production (Peter et al., 2022). Currently many programs of biomass production are used to extract bioactive compounds with an increasing use of diverse systems such as mesh ultra-thin layer, tubular glass, plastic bag, and flat-plate PBRs (Sandmann et al., 2021; Tayebati et al., 2021; Wurm and Sandmann, 2021). Although the PBR might increase production cost, these well programmed systems could realize extremely high cell density for aquaculture purposes (Vu et al., 2019; Tibbetts et al., 2020; Leal et al., 2021). Biotechnology has opened new avenues for microalgal applications, where strain selection including non-genetic as well as genetic modifications facilitate beneficial bioactive compounds (e.g., anti-pathogenic, anti-oxidant, etc.) for farmed aquatic larvae (Kiataramgul et al., 2020). Yet the biosecurity of transgenic microalgae should be carefully evaluated before their large-scale utilization.

TABLE 1

Size range as live feed General culture conditions Common nutrient/diet Applications as live feeds Key nutritional advantages
(% total FA or AA)
References
Isochrysis sp. 3–6 μm 15–30°C, SNS 1–9% EPA; 8.1–12.5% DHA Pan et al., 2018; Balakrishnan and Shanmugam, 2021; Shekarabi et al., 2021
Tisochrysis sp. 3–7.5 μm 18–30°C, SNS 0.6–0.8% EPA; 10–11% DHA Tato and Beiras, 2019; Dayras et al., 2021; Mai et al., 2021
Microalgae Walne’s, f/2 medium, agricultural fertilizers Diet for copepod, rotifer, larvae of bivalves, echinoderms, and phytoplanktivorous fish
Pavlova sp. 4–6 μm 23–20°C, SNS 17.8–33.9% EPA; 3.6–10.2% DHA Rehberg-Haas et al., 2015; Yang et al., 2020; Dayras et al., 2021; Hassan et al., 2022
Nannochloropsis sp. 2–4 μm 26–30°C, SNS 26.2–35.2% EPA; 0–0.52% DHA Pan et al., 2018; Yang et al., 2020
Tetraselmis sp. 13–15 μm 26–30°C, SNS 4.2–5.2% EPA; 23.6–27.9% ALA Pan et al., 2018; Lee et al., 2021
Rhodomonas sp. 7–14 μm 15–25°C, SNS 8–15.8% EPA; 6–8.8% DHA Latsos et al., 2020; Oostlander et al., 2020; Dayras et al., 2021

Brachionus sp. 90–320 μm 25°C, 15–35 ppt Snell et al., 2019
Rotifer Colurella sp. 48–99 μm 22–28°C, 15–34 ppt Microalgae (fresh cells, lipolyzed powder or concentrated paste) First-feeding (2–10 dph) of larval fish and crustacean Nutritional profile could be manipulated by enrichment Chigbu and Suchar, 2006; Madhu et al., 2016
Proales sp. 82.7 ± 10.9 μm 25°C, 2–25 ppt Wullur et al., 2011; Hagiwara et al., 2014

Ciliated Protist Euplotes sp. 60–110 μm 25–32°C, 20–30 ppt Baker yeast, fermented fish diet, and microalgae First-feeding (2–10 dph) of small-mouthed larval fish Nutritional profile could be manipulated by enrichment Tarangkoon et al., 2018; da Annunciação et al., 2020
Metacylis sp. 37–50 μm 30°C, 33 ppt Lee and Choi, 2016

Artemia Artemia sp. Newly-hatched: 400–500 μm; Enriched: 500–700 μm 28°C, 25–33 ppt No feeding: nauplii used after hatch or enrichment (fish oil, fish soluble emulsions) Fish or crustacean larvae at second-stage feeding (>10 dph) Nutritional profile could be manipulated by enrichment Figueiredo et al., 2009

Pseudodiaptomus annandalei/
P. inopinus
150–1,100 μm/
200–800 μm
25–30°C, 15–20 ppt/20°C, 17 ppt Live microalgae cell (Isochrysis, Rhodomonas/Phaeodactylum, Pavlova, Tisochrysis, and Chlorella) 2.9–12.8% EPA, 12.6–57% DHA/
0.6–24.4% EPA, 1.3–12.7% DHA
Golez et al., 2004; Rayner et al., 2015; Matsui et al., 2021; Nielsen et al., 2021
Acartia bilobata/
A. tonsa
100–1,100 μm/
100–1,200 μm
25–30°C, 15–20 ppt/
17–23°C, 27–34 ppt
Live microalgae cell (Isochrysis/Rhodomonas) ND/ 16.5% EPA, 7.9% EPA Drillet et al., 2008; Pan et al., 2014; Chi et al., 2018; Torres et al., 2022
Apocyclops royi 100–1,000 μm 25–30°C, 15–20 ppt Live microalgae (Isochrysis, Rhodomonas, and Dunaliella), baker yeast 1.8–13.4% EPA; 4–35.3% DHA Chang and Lei, 1993; Pan et al., 2018; Nielsen et al., 2021
Copepod Parvocalanus crassirostris 60–400 μm 21–27°C, 20–36 ppt Live microalgae (Tisochrysis, Isochrysis, Rhodomonas, Tetraselmis, and Heterocapsa) Several developmental stages (size range: 60–1,200 μm) for larval fish and crustaceans at different feeding stages 2.8–5.4% EPA; 6.1–22.3% DHA McKinnon et al., 2003; Alajmi, 2015; Kline and Laidley, 2015; Jackson and Lenz, 2016
Paracyclopina nana 70–600 μm 18°C, 15 ppt Live microalgae (Tisochrysis, Rhodomonas, and Pavlova) 2.3–5.5% EPA; 8.9–13.3% DHA Lee et al., 2006; Dayras et al., 2021
Bestiolina similis/
B. amoyensis
70–560 μm/
<100–<1,000 μm
26–28°C, 29–31 ppt/
24–26°C, 28 ppt
Live microalgae (Isochrysis, Pavlova, Rhodomonas, and Tetraselmis/Isochrysis) 0.6% EPA; 2.5% DHA/ND McKinnon et al., 2003; Lian et al., 2018; Camus et al., 2021

Moon jellyfish
Aurelia aurita
5 ± 1 cm 22°C, NS 9.88–17.5% EPA; 1.3–1.8% DHA, 0.8–14.5% glycine Liu et al., 2015; Wakabayashi et al., 2016b
Flame jellyfish
Rhopilema esculentum
2 ± 0.5 cm 22°C, NS Artemia nauplii/wild-captured zooplankton Lobster phyllosoma larvae, Juveniles of silver pomfret, and threadsail filefish 7.8% EPA; 1.36% glycine Liu et al., 2015
Other live feeds Fungal-like protists
Schizochytrium sp.
9–14 μm 30°C, FW Glucose solution Diet or enrichment products for copepod, rotifer, and Artemia 40–54% DHA Ramos-Vega et al., 2018; Guo et al., 2020
Oyster fertilized egg or trochophore 50-70 μm 27.5-29°C, 35 ppt No feeding: trochophore used after fertilization First-feeding (2–10 dph) of small-mouthed larval fish 2.2–5.4% EPA; 2–3.3% DHA Hur et al., 2008; Basford et al., 2019

Characteristics of different live feed organisms used in marine larviculture.

FA, fatty acid; AA, amino acid; SNS, sterilized natural seawater; NS, natural seawater; FW, fresh water; EPA, eicosapentaenoic acid (20: 5n3); DHA, docosahexaenoic acid (22: 6n3); ALA, α-Linolenic acid; dph, days post hatching; ND, no data.

Ciliated Protists

Ciliates are a group of single-celled protist, which commonly exist in marine environments worldwide. Some ciliate species are pathogenic for fish, because they experience partially or completely their life cycle in or on the host (Jahangiri et al., 2021). Another group of ciliates appear to be planktonic and they have a potential as live feed in marine hatcheries (Wan-Mohtar et al., 2021). Culture techniques for Euplotes sp. and Fabre sp. have been developed in recent studies (Table 1). Ciliates could rapidly increase their populations by fission when fed on baker’s yeast, fermented fish meal, and photosynthetic bacteria (de Freitas Côrtes et al., 2013; Balamuralir, 2020; Teiba et al., 2020). The production of these fast-growing protists does not necessarily rely on a microalgal diet, which greatly enhance the feasibility and convenience for culture maintenance. Most importantly, ciliates are known for their tiny cell size (20–60 μm), which is particularly favorable for small-mouthed larvae (Hill et al., 2020). Indeed, ciliate-based diets have been acknowledged to successfully sustain larvae rearing of several marine ornamental or edible fish species (Nagano et al., 2000; Rhodes and Phelps, 2008; Madhu and Madhu, 2014; Leu et al., 2015). On the other hand, the use of bacteriovorous ciliates for pathogen removal has recently emerged. Lin et al. (2020) noted the remarkable increase of survival rate (approx. 60%) in pathogen challenge trials of grouper larvae when the water containing rich Vibrio campbellii was prefiltered by the ciliate Strombidium sp.

Rotifers

Rotifers are a group of multicellular microorganisms making up a phylum Rotifera. Since the 1970s, species and strains of the genus Brachionus have been used as live feed for the first feeding of marine larvae during 3–10 days post hatching (dph) (Lubzens et al., 2001). Although the taxonomy of Brachionus plicatilis and Brachionus rotundiformis complex remains inconclusive, they are normally referred as SS, S, and L type rotifer based on their size. Rotifers are highly demanded in the current larviculture industry due to the following reasons: (1) reasonable size spectrum (100–250 μm) and slow cruising swimming pattern for first feeding of commercially important fish species (e.g., sea bream and sea bass) (Conceição et al., 2010); (2) parthenogenetic reproduction facilitates high duplication rates (Fu et al., 2021); (3) capacity of tolerating high population densities and environmental variation (Suantika et al., 2003); (4) vector of nutrients or medicine delivery for fish larvae (Eryalcin, 2018; Fu et al., 2021; Safiin et al., 2021). In common batch culture systems, the density of Brachionus rotifer peaks during 4–7 day-post-inoculation, then the partial harvest and water exchange are carried out until subsequent inoculation (Sales et al., 2019). A semi-continuous recirculating aquaculture systems (RAS) has been developed to sustain superintensive rotifer cultures (>5,000 ind./mL) for periodic harvest (Suantika et al., 2000; Suantika et al., 2003). The maintenance of superintensive culture, however, increase the cost of rotifer production due to the equipment requirements of a recirculating aquaculture system (Suantika et al., 2003). Besides environmental control, antioxidants could be fed to rotifers to further improve their stress resistance in high density cultures with deteriorating water quality (Gao et al., 2021). The nutritional enrichment of rotifers is necessary due to the lack of many essential fatty acids for fish larvae at the first feeding stage (Ferreira et al., 2018; Ghaderpour and Estevez, 2020). Several enrichment products and protocols have been developed and evaluated to enhance larval growth and survival by improving ω3 highly unsaturated fatty acid (HUFA) content, and a high DHA/EPA ratio in rotifers (Abu-Rezq et al., 2002). Recently, cultures of very tiny rotifer species (<100 μm), such as Proales similis and Colurella adriatica, have been established (Table 1) and used particularly for the first feeding of small-mouthed larvae of marine ornamental species (Hagiwara et al., 2014; Madhu et al., 2016; Rebolledo et al., 2021).

Artemia

Artemia is a genus of aquatic crustaceans in the class Branchiopoda, which dominates in hypersaline habitats (e.g., inland salt lakes). During dry seasons, Artemia starts to produce floating resting eggs (aka cysts) due to extreme hypersaline stress. The cysts are collected and processed (purification and dehydration), then canned in dark and cold conditions for further storage and distribution. Although Artemia are not naturally accessible food items for most marine or brackish larvae, they are extensively used in larviculture industry due to the following reasons: (i) durable cysts and manipulable hatching: obtain nauplii at desirable timepoints for larval feeding; (ii) size suitability: first naupliar stage of various Artemia species is ranging 400–500 μm offering preferable size for second-staged larval feeding (7–14 dph); (iii) vector of nutrients or medicine delivery systems (enrichment needed before use) (Eryalcin, 2018). Artemia franciscana (Table 1) is one of the most utilized species due to its smaller body size and first-ranked annual production (1,000–2,000 tons) from the Great Salt Lake of Utah, United States. Whereas the production from hypersaline lakes in West Siberia, Russia and Kazakhstan, and salt works at Bohai Bay, China are ranked second or third cyst production areas of Artemia parthenogenetica and A. franciscana, respectively (Litvinenko et al., 2015). Other production areas, such as Brazil (Camara, 2020), Vietnam (Le et al., 2019), Iran (Manaffar et al., 2020), and Tunisia (Sellami et al., 2020), also contribute certain amounts of cyst production. Due to the high market demand, Artemia Reference Centers have been established at Ghent University, Belgium in 1978, and at Tianjin University of Science and Technology, China in 2018 to promote applications of Artemia globally. Climate change and pollution have significant impacts on the harvest yield of cysts and consequently the price (Guong and Hoa, 2012; Santos et al., 2018; Van Stappen et al., 2020). Proper managements of culture conditions in salt work production (especially in Bohai Bay, China and Mekong Delta, Vietnam) should be addressed to stabilize both cyst and salt production, which might encourage a better socio-economic perspective for Artemia farming and their global supply (Manaffar et al., 2020).

Copepods

Planktonic copepods are naturally accessible and preferable live feeds for fish or invertebrate larvae in the marine environment and are used as live feeds in aquaculture hatcheries (Drillet et al., 2011; Santhanam et al., 2019; Fernández-Ojeda et al., 2021). Species from the orders Calanoida, Cyclopoida, and Harpacticoida are commonly selected and cultivated for larval feedings. Copepods provide wide windows of prey size (60–1,500 μm) due to their species diversity and 12 developmental stages (six nauplii, five copepodites, and adult). Their jerky swimming pattern attracts a higher predatory response of fish larvae (Burbano et al., 2020). Remarkably, the nutritional advantages (great contents of ω3 HUFA) make these zooplankters favorable for larviculture even without an additional enrichment process (Matsui et al., 2021). In Taiwan and Vietnam, copepods are commonly harvested from outdoor earthen ponds after fertilization (Su et al., 2005; Blanda et al., 2015; GrØnning et al., 2019). Outdoor combined-species cultures might be feasible and cost effective, but the concerns of unstable production, species composition, and risks in pathogenic transmission have hindered the applications of copepods (Chang et al., 2011; Blanda et al., 2017). On the other hand, mono-species indoor copepod cultures of various species were established at either laboratory or intensive scales (Table 1), which facilitate copepod biomass of economic feasibility and biosecurity for larviculture industry (Abate et al., 2016; Santhosh et al., 2018). Particularly, the success in “micro-sized” copepod production (i.e., adult < 1 mm and nauplii < 80 μm, such as in Parvocalanus sp., Bestiolina sp., and Paracyclopina sp.) have opened bright avenues for the larviculture of marine ornamental fish (Kline and Laidley, 2015; Callan et al., 2018; Zeng et al., 2018; Dayras et al., 2021; Wang L. et al., 2021), which are considered as challenging but necessary for trade and conservation demands. Instead of maintaining the culture, resting eggs and cryopreservation are alternative approaches to obtain alive copepods (Kaviyarasan and Santhanam, 2019; Pan et al., 2020; Wilson et al., 2021). Although the cold stored production of a specific copepod species (Acartia tonsa) seems to be applicable and commercialized, induction and storage protocol of various dormant copepod species and stages should be further optimized to universally apply their novelties by the industry.

Other Live Feeds

Heterotrophic Schizochytrium sp., Halophytophthora sp., and Salispina sp. (Table 1) are a group of unicell or filamentous microorganisms containing great amounts of PUFAs (Estudillo-del Castillo et al., 2009; Su et al., 2021). The spray-dried powder of these microorganisms implicates great potential as alternative or supplementary diets to microalgae for the feeding and enrichment of zooplanktonic live feeds (Eryalçın, 2019). Besides holoplankton, some sessile marine organisms could be used as live feeds at their early developmental stages of planktonic life forms. Fertilized eggs and trochophore of bivalves, such as oyster (Crassostrea sp.) and blue mussel (Mytilus sp.), could be obtained by strip spawning (Scarpa, 2002; Turan and Kling, 2018). They are of a suitable size (40–60 μm) and great ω3 HUFAs contents, thus particularly supportive for the first-feeding of small-mouthed fish such as grouper and other reef species (Liao et al., 2001; Basford et al., 2019). Planktonic barnacle nauplii (100–150 μm) are also considered as potential live feeds (López et al., 2010; Basford et al., 2019). Cladocera species (e.g., Daphnia sp., Moina sp., and Ceriodaphnia sp.) could be cultivated with low cost using aquaculture biofloc technology and fermented animal wastes (da Silva Campos et al., 2020; Rasdi et al., 2020; Turcihan et al., 2022), and serve as live feeds for many freshwater fish larvae such as tilapia (Herawati et al., 2015), catfish (Vu and Huynh, 2020), and ornamentals like Betta fish (Kwon et al., 2013) and freshwater angelfish (Farhadian et al., 2014). Notably, studies have also indicated the feasibility of using water flea as live feed in marine larviculture of fish (Kamrunnahar et al., 2019) and shrimp (Mona et al., 2017). Jellyfish are used as live feed for the phyllosoma larvae of lobster (Palinuridae and Scyllaridae) (Goldstein and Nelson, 2011; Wakabayashi et al., 2012, 2016a), Threadsail filefish (Miyajima et al., 2011), and silver pomfret juveniles (Wang Q. et al., 2021).

Discussion and Future Perspectives

Despite their wide applications in marine larviculture, the widely used live feeds (Brachionus rotifers and Artemia) show several limitations. The diversification and establishment of new live feed culture (especially micro-sized copepod and rotifer species) is promoting research programs and industrial applications. Production of dormant live feed (e.g., copepod resting eggs) is an ongoing program, and this is expected to pave the road for the marine larviculture industry. Future programs should target both indoor and outdoor aquaculture systems using appropriate RAS techniques with artificial intelligence (AI) technology to optimize both prey and larval culture performances. Developing technology and management of both virus free and bacterial free live feed for larviculture. Transferring scientific technology of live feed from academic achievements to stakeholders such as the aquaculture industry and farmers. Both scientists and farmers should work closely together to ensure the upscaling of pilot studies and maintain a required feedback cycle between industrial needs and their declination as scientific research challenges.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Statements

Author contributions

Y-JP wrote the first draft of the manuscript. H-UD, J-SH, and SS contributed to manuscript revision with Y-JP. All authors contributed to conception, design of the mini review, and approved the submitted version.

Funding

This work is a contribution to the research projects supported by Taiwanese Ministry of Science and Technology, Council of Agriculture, Executive Yuan, and Ministry of Education (109-2636-M-019-001 and 110-2636-M-019-001; 110AS-1.3.2-ST-aO and 111AS-1.3.2-ST-aU; Higher Education Sprout Project to the CEO, NTOU) to Y-JP. This work is supported by the projects CPER 2015-2021 MARCO and CPER 2021-2026 IDEAL (funded by Europe FEDER, French government the region Hauts-de-France and IFREMER), the STIMULE project COPEFISH funded by the region Hauts-de-France, and the International Associated Laboratory between Université de Lille and National Taiwan Ocean Uuniversity (IAL MULTIFAQUA) to SS. Financial supports from the Taiwanese Ministry of Science and Technology (108-2621-M-019-003, 109-2621-M-019-002, and 110-2621-M-019-001) and the Center of Excellence for Ocean Engineering (109J13801-51 and 110J13801-51) to J-SH are also acknowledged.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  • 1

    Abate T. G. Nielsen R. Nielsen M. Jepsen P. M. Hansen B. W. (2016). A cost-effectiveness analysis of live feeds in juvenile turbot Scophthalmus maximus (Linnaeus, 1758) farming: copepods versus Artemia.Aquac. Nutr.22899910. 10.1111/anu.12307

  • 2

    Abu-Rezq T. Al-Abdul-Elah K. Duremdez R. Al-Marzouk A. James C. M. Al-Gharabally H. et al (2002). Studies on the effect of using the rotifer, Brachionus plicatilis, treated with different nutritional enrichment media and antibiotics on the growth and survival of blue-fin sea bream, Sparidentex hasta (Valenciennes), larvae.Aquac. Res.33117128. 10.1046/j.1365-2109.2002.00658.x

  • 3

    Alajmi F. F. (2015). Developing Intensive Culture Techniques for the Tropical Copepod Parvocalanus Crassirostris as a Live Feed for Aquaculture.Ph.D thesis, Australia: James Cook University.

  • 4

    Balakrishnan J. Shanmugam K. (2021). Lowering the culture medium temperature improves the omega-3 fatty acid production in marine microalga Isochrysis sp. CASA CC 101.Prep. Biochem. Biotechnol.51511518. 10.1080/10826068.2020.1833345

  • 5

    Balamuralir R. S. (2020). Experimental evaluation of diets for culture of a potential live feed, Euplotes sp. (Protozoa, Ciliophora) Uttar Pradesh.J. Zool.4140146.

  • 6

    Basford A. J. Makings N. Mos B. White C. A. Dworjanyn S. (2021). Greenwater, but not live feed enrichment, promotes development, survival, and growth of larval Portunus armatus.Aquaculture534:736331. 10.1016/j.aquaculture.2020.736331

  • 7

    Basford A. J. Mos B. Mishina T. Dworjanyn S. A. (2019). Oyster larvae as a potential first feed for small-mouthed ornamental larval fish.Aquac. Environ. Interact.11657669. 10.3354/aei00338

  • 8

    Blanda E. Drillet G. Huang C. C. Hwang J. S. Højgaard J. K. Jakobsen H. H. et al (2017). An analysis of how to improve production of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds.Aquaculture479432441. 10.1016/j.aquaculture.2017.06.018

  • 9

    Blanda E. Drillet G. Huang C. C. Hwang J. S. Jakobsen H. H. Rayner T. A. et al (2015). Trophic interactions and productivity of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds.Aquaculture4451121. 10.1016/j.aquaculture.2015.04.003

  • 10

    Borowitzka M. A. (2013). High-value products from microalgae—their development and commercialisation.J. Appl. Phycol.25743756. 10.1007/s10811-013-9983-9

  • 11

    Burbano M. F. Torres G. A. Prieto M. J. Gamboa J. H. Chapman F. A. (2020). Increased survival of larval spotted rose snapper Lutjanus guttatus (Steindachner, 1869) when fed with the copepod Cyclopina sp. and Artemia nauplii.Aquaculture519:734912. 10.1016/j.aquaculture.2019.734912

  • 12

    Callan C. K. Burgess A. I. Rothe C. R. Touse R. (2018). Development of improved feeding methods in the culture of yellow tang, Zebrasoma flavescens.J. World Aquac. Soc.49-3493503. 10.1111/jwas.12496

  • 13

    Camara M. R. (2020). After the gold rush: A review of Artemia cyst production in northeastern Brazil.Aquac. Rep.17:100359. 10.1016/j.aqrep.2020.100359

  • 14

    Camus T. Rolla L. Jiang J. Zeng C. (2021). Effects of microalgal food quantity on several productivity-related parameters of the Calanoid copepod Bestiolina similis (Calanoida: Paracalanidae).Front. Mar. Sci.8:812240. 10.3389/fmars.2021.812240

  • 15

    Chang W. B. Lei C. H. (1993). Development and energy content of a brackish-water copepod, Apocyclops royi (Lindberg) reared in a laboratory.Bull. Inst. Zool. Acad. Sin.326281.

  • 16

    Chang Y. S. Chen T. C. Liu W. J. Hwang J. S. Kou G. H. Lo C. F. (2011). Assessment of the roles of copepod Apocyclops royi and bivalve mollusk Meretrix lusoria in white spot syndrome virus transmission.Mar. Biotechnol.1390917. 10.1007/s10126-010-9352-5

  • 17

    Chi X. Javidpour J. Sommer U. Mueller-Navarra D. (2018). Tracking fatty acids from phytoplankton to jellyfish polyps under different stress regimes: a three trophic levels experiment.Front. Ecol. Evol.6:118. 10.3389/fevo.2018.00118

  • 18

    Chigbu P. Suchar V. A. (2006). Isolation and culture of the marine rotifer, Colurella dicentra (Gosse, 1887), from a Mississippi Gulf Coast estuary.Aquac. Res.3714001405. 10.1111/j.1365-2109.2006.01572.x

  • 19

    Conceição L. E. Yúfera M. Makridis P. Morais S. Dinis M. T. (2010). Live feeds for early stages of fish rearing.Aquac. Res.41613640. 10.1111/j.1365-2109.2009.02242.x

  • 20

    da Annunciação W. F. Ohs C. L. Tsuzuki M. Y. (2020). Influence of food concentration and abiotic parameters on population density growth of the ciliated marine protozoan Euplotes sp. under controlled conditions.Aquac. Res.51-2523534. 10.1111/are.14397

  • 21

    da Silva Campos C. V. F. da Silva, Farias R. da Silva S. M. B. C. Severi W. et al (2020). Production of Daphnia similis Claus, 1876 using wastewater from tilapia cultivation in a biofloc system.Aquacu. Int.28403419. 10.1007/s10499-019-00470-7

  • 22

    Dayras P. Bialais C. Sadovskaya I. Lee M. C. Lee J. S. Souissi S. (2021). Microalgal diet influences the nutritive quality and reproductive investment of the cyclopoid copepod Paracyclopina nana.Front. Mar. Sci.8:697561. 10.3389/fmars.2021.697561

  • 23

    de Freitas Côrtes G. Tsuzuki M. Y. Melo E. M. C. (2013). Monoculture of the ciliate protozoan Euplotes sp. (Ciliophora; Hypotrichia) fed with different diets.Acta Sci. Biol. Sci.31519. 10.4025/actascibiolsci.v35i1.11795

  • 24

    Drillet G. Frouël S. Sichlau M. H. Jepsen P. M. Højgaard J. K. Joarder A. K. et al (2011). Status and recommendations on marine copepod cultivation for use as live feed.Aquaculture315155166. 10.1016/j.aquaculture.2011.02.027

  • 25

    Drillet G. Jepsen P. M. Højgaard J. K. Jørgensen N. O. Hansen B. W. (2008). Strain-specific vital rates in four Acartia tonsa cultures II: life history traits and biochemical contents of eggs and adults.Aquaculture2794754. 10.1016/j.aquaculture.2008.04.010

  • 26

    Eryalcin K. M. (2018). Effects of different commercial feeds and enrichments on biochemical composition and fatty acid profile of rotifer (Brachionus Plicatilis, Muller 1786) and Artemia franciscana.Turk. J. Fish. Aquat. Sci.188190. 10.4194/1303-2712-v18_1_09

  • 27

    Eryalçın K. M. (2019). Nutritional value and production performance of the rotifer Brachionus plicatilis Müller, 1786 cultured with different feeds at commercial scale.Aquac. Int.2875890. 10.1007/s10499-019-00375-5

  • 28

    Estudillo-del Castillo C. Gapasin R. S. Leaño E. M. (2009). Enrichment potential of HUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis.Aquaculture2935761. 10.1016/j.aquaculture.2009.04.008

  • 29

    FAO (2020). The State of World Fisheries and Aquaculture 2020.Rome: Food and Agriculture Organization.

  • 30

    Farhadian O. Kharamannia R. Mahboobi Soofiani N. Ebrahimi Dorche E. (2014). Larval feeding behaviour of angel fish Pterophyllum scalare (Cichlidae) fed copepod Eucyclops serrulatus and cladoceran Ceriodaphnia quadrangula.Aquac. Res.4512121223. 10.1111/are.12065

  • 31

    Fernández-Ojeda C. Muniz M. C. Cardoso R. P. dos Anjos R. M. Huaringa E. Nakazaki C. et al (2021). Plastic debris and natural food in two commercially important fish species from the coast of Peru.Mar. Pollut. Bull.173:113039. 10.1016/j.marpolbul.2021.113039

  • 32

    Ferreira M. Cortina-Burgueño Á Freire I. Otero A. (2018). Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp.Aquaculture491351357. 10.1016/j.aquaculture.2018.03.024

  • 33

    Figueiredo J. van Woesik R. Lin J. Narciso L. (2009). Artemia franciscana enrichment model - How to keep them small, rich and alive?Aquaculture294212220. 10.1016/j.aquaculture.2009.05.007

  • 34

    Fu Z. Yang R. Zhou S. Ma Z. Zhang T. (2021). Effects of rotifers enriched with different enhancement products on larval performance and jaw deformity of golden pompano larvae Trachinotus ovatus (Linnaeus, 1758).Front. Mar. Sci.7:1232. 10.3389/fmars.2020.626071

  • 35

    Gallardo P. Bueno G. W. Araneda C. Benfey T. (2022). Status of Atlantic halibut (Hippoglossus hippoglossus) aquaculture production technology in Chile.Aquac. Rep.22:100958. 10.1016/j.aqrep.2021.100958

  • 36

    Gao Y. S. Chen Y. K. Wang Q. J. Wang G. Q. Lin L. L. Chen X. M. et al (2021). L-carnitine can improve the population growth and anti-stress ability of rotifer (Brachionus rotundiformis) under ammonia stress.Aquac. Rep.20:100622. 10.1016/j.aqrep.2021.100622

  • 37

    Ghaderpour S. Estevez A. (2020). Effect of short-term rotifer enrichment with marine phospholipids on growth, survival, and composition of meager (Argyrosomus regius) larvae.Front. Mar. Sci.7:1082. 10.3389/fmars.2020.579002

  • 38

    Goldstein J. S. Nelson B. (2011). Application of a gelatinous zooplankton tank for the mass production of larval Caribbean spiny lobster, Panulirus argus.Aquat. Living Resour.244551. 10.1051/alr/2011100

  • 39

    Golez M. N. Takahashi T. Ishimarul T. Ohno A. (2004). Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida).Plankton Biol. Ecol.511525.

  • 40

    Gomes A. Lourenço S. Santos P. M. Raposo A. Mendes S. Gonçalves S. C. et al (2021). Effects of single and mixed-diatom diets on growth, condition, and survival of larvae of the sea urchin Paracentrotus lividus (Lamarck, 1816).Aquac. Int.2910691090. 10.1007/s10499-021-00676-8

  • 41

    GrØnning J. Doan N. X. Dinh N. T. Dinh K. V. Nielsen T. G. (2019). Ecology of Pseudodiaptomus annandalei in tropical aquaculture ponds with emphasis on the limitation of production.J. Plankton Res.41741758. 10.1093/plankt/fbz053

  • 42

    Guo D. S. Tong L. L. Ji X. J. Ren L. J. Ding Q. Q. (2020). Development of a strategy to improve the stability of culture environment for docosahexaenoic acid fermentation by Schizochytrium sp.Appl. Biochem. Biotechnol.19881894. 10.1007/s12010-020-03298-7

  • 43

    Guong V. T. Hoa N. M. (2012). “Aquaculture and agricultural production in the Mekong Delta and its effects on nutrient pollution of soil and water,” in The Mekong Delta System, edsRenaudF. G.KuenzerC. (Dordrecht: Springer), 363393. 10.1007/978-94-007-3962-8_14

  • 44

    Hagiwara A. Wullur S. Marcial H. S. Hirai N. Sakakura Y. (2014). Euryhaline rotifer Proales similis as initial live food for rearing fish with small mouth.Aquaculture432470474. 10.1016/j.aquaculture.2014.03.034

  • 45

    Hansen B. W. Møller S. (2021). A bibliometric survey of live feed for marine finfish and shrimp larval production.Aquac. Res.5251245135. 10.1111/are.15460

  • 46

    Hassan M. M. Parks V. Laramore S. (2022). Variation in filtration and ingestion rates among different microalgae species by hard clam, Mercenaria mercenaria, larvae and post-set juveniles.Aquac. Res.53684688. 10.1111/are.15585

  • 47

    Hemaiswarya S. Raja R. Ravi Kumar R. Ganesan V. Anbazhagan C. (2011). Microalgae: a sustainable feed source for aquaculture.World J. Microbiol. Biotechnol.2717371746. 10.1007/s11274-010-0632-z

  • 48

    Herawati V. E. Hutabarat J. Radjasa O. K. (2015). Growth and survival rate of tilapia (Oreochromis niloticus) larvae fed by Daphnia magna cultured with organic fertilizer resulted from probiotic bacteria fermentation.HAYATI J. Biosci.22169173. 10.1016/j.hjb.2015.08.001

  • 49

    Hill M. Pernetta A. Crooks N. (2020). Size matters: a review of live feeds used in the culture of marine ornamental fish.Asian Fish. Sci.3161174. 10.33997/j.afs.2020.33.2.007

  • 50

    Hu J. Liu Y. Ma Z. Qin J. G. (2018). “Feeding and development of warm water marine fish larvae in early life,” in Emerging Issues in Fish Larvae Research, ed.YúferaM. (Cham: Springer), 275296. 10.1007/978-3-319-73244-2_10

  • 51

    Hur Y. B. Min K. S. Kim T. E. Lee S. J. Hur S. B. (2008). Larvae growth and biochemical composition change of the Pacific oyster Crassostrea gigas, larvae during artificial seed production.J. Aquac.2203212.

  • 52

    Infante J. Z. Cahu C. L. (2001). Ontogeny of the gastrointestinal tract of marine fish larvae.Comp. Biochem. Physiol. Part C130477487. 10.1016/s1532-0456(01)00274-5

  • 53

    Jackson J. M. Lenz P. H. (2016). Predator-prey interactions in the plankton: larval fish feeding on evasive copepods.Sci. Rep.6111. 10.1038/srep33585

  • 54

    Jahangiri L. Shinn A. P. Pratoomyot J. Bastos Gomes G. (2021). Unveiling associations between ciliate parasites and bacterial microbiomes under warm-water fish farm conditions–a review.Rev. Aquac.1310971118. 10.1111/raq.12514

  • 55

    Kamrunnahar K. Md A. Jeong U. C. Kang S. J. (2019). Mass culture of Moina macrocopa using organic waste and its feeding effects on the performance of Pagrus major larvae.Egypt. J. Aquat. Res.457580. 10.1016/j.ejar.2019.02.001

  • 56

    Kandathil Radhakrishnan D. AkbarAli I. Schmidt B. V. John E. M. Sivanpillai S. Thazhakot Vasunambesan S. (2020). Improvement of nutritional quality of live feed for aquaculture: An overview.Aquac. Res.51117. 10.1111/are.14357

  • 57

    Kaviyarasan M. Santhanam P. (2019). “A technique on the culture and preservation of marine copepod eggs,” in Basic and Applied Zooplankton Biology, edsSanthanamP.BegumA.PachiappanP. (Singapore: Springer), 197208. 10.1007/978-981-10-7953-5_6

  • 58

    Kiataramgul A. Maneenin S. Purton S. Areechon N. Hirono I. Brocklehurst T. W. et al (2020). An oral delivery system for controlling white spot syndrome virus infection in shrimp using transgenic microalgae.Aquaculture521:735022. 10.1016/j.aquaculture.2020.735022

  • 59

    Kline M. D. Laidley C. W. (2015). Development of intensive copepod culture technology for Parvocalanus crassirostris: optimizing adult density.Aquaculture435128136. 10.1016/j.aquaculture.2014.09.022

  • 60

    Kwon O. N. Park K. Y. Park H. G. (2013). The rotifer Brachionus calyciflorus and water flea Moina macrocopa as alternative foods for production of the fighting fish Betta splendens.Korean J. Fish. Aquat. Sci.46393398. 10.5657/KFAS.2013.0393

  • 61

    Latsos C. Van Houcke J. Timmermans K. R. (2020). The effect of nitrogen starvation on biomass yield and biochemical constituents of Rhodomonas sp.Front. Mar. Sci.7:900. 10.3389/fmars.2020.563333

  • 62

    Le T. H. Hoa N. V. Sorgeloos P. Van Stappen G. (2019). Artemia feeds: a review of brine shrimp production in the Mekong Delta, Vietnam.Rev. Aquac.1111691175. 10.1111/raq.12285

  • 63

    Leal E. de Beyer L. O’Connor W. Dove M. Ralph P. J. Pernice M. (2021). Production optimisation of Tisochrysis lutea as a live feed for juvenile Sydney rock oysters, Saccostrea glomerata, using large-scale photobioreactors.Aquaculture533:736077. 10.1016/j.aquaculture.2020.736077

  • 64

    Lee K. W. Choi Y. U. (2016). Population growth of a tropical tintinnid, Metacylis tropica on different temperature, salinity and diet.J. Korea Acad. Ind. Coop. Soc.17322328. 10.5762/KAIS.2016.17.9.322

  • 65

    Lee K. W. Park H. G. Lee S. M. Kang H. K. (2006). Effects of diets on the growth of the brackish water cyclopoid copepod Paracyclopina nana Smirnov.Aquaculture256346353. 10.1016/j.aquaculture.2006.01.015

  • 66

    Lee W. K. Ryu Y. K. Choi W. Y. Kim T. Park A. Lee Y. J. et al (2021). Year-round cultivation of Tetraselmis sp. for essential lipid production in a semi-open raceway system.Mar. Drugs19:314. 10.3390/md19060314

  • 67

    Leu M. Y. Sune Y. H. Meng P. J. (2015). First results of larval rearing and development of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck & Schlegel) from hatching through juvenile stage with notes on its potential for aquaculture.Aquac. Res.4610871100. 10.1111/are.12265

  • 68

    Lian G. Wang Y. Sun R. Hwang J. S. (2018). Species Diversity of Marine Planktonic Copepods in China’s Seas.Beijing: China Ocean Press.

  • 69

    Liao I. C. Su H. M. Chang E. Y. (2001). Techniques in finfish larviculture in Taiwan.Aquaculture200131. 10.1016/s0044-8486(01)00692-5

  • 70

    Lin H. Y. Yeh W. Y. Tsai S. F. Chiang K. P. Lin J. H. Y. Tsao C. C. et al (2020). Biological protective effects against Vibrio infections in grouper larvae using the Strombidium sp. NTOU1, a marine ciliate amenable for scaled-up culture and with an excellent bacteriovorous ability.Front. Mar. Sci.7:373. 10.3389/fmars.2020.00373

  • 71

    Litvinenko L. I. Litvinenko A. I. Boiko E. G. Kutsanov K. (2015). Artemia cyst production in Russia.Chin. J. Oceanol. Limnol.3314361450. 10.1007/s00343-015-4381-6

  • 72

    Liu C. S. Chen S. Q. Zhuang Z. M. Yan J. P. Liu C. L. Cui H. T. (2015). Potential of utilizing jellyfish as food in culturing Pampus argenteus juveniles.Hydrobiologia754189200. 10.1007/s10750-014-1869-6

  • 73

    López D. A. López B. A. Pham C. K. Isidro E. J. De Girolamo M. (2010). Barnacle culture: background, potential and challenges.Aquac. Res.41367375. 10.1111/j.1365-2109.2010.02508.x

  • 74

    Lubzens E. Zmora O. Barr Y. (2001). “Biotechnology and aquaculture of rotifers,” in Rotifera IX: Proceedings of the IXth International Rotifer Symposium, edsSanoamuangL.SegersH.ShielR. J.GulatiR. D. (Khon Kaen: Springer), 337353. 10.1007/978-94-010-0756-6_44

  • 75

    Madhu K. Madhu R. (2014). Captive spawning and embryonic development of marine ornamental purple firefish Nemateleotris decora (Randall & Allen, 1973).Aquaculture42419. 10.1016/j.aquaculture.2013.12.027

  • 76

    Madhu K. Madhu R. Mohandas M. P. Vijayan M. T. (2016). Isolation, identification and culture of the marine rotifer Colurella adriatica Ehrenberg, 1831 (Family: Lepadellidae) from Andaman & Nicobar Islands: A promising live feed for larval rearing of high value shellfishes and finfishes.J. Mar. Biol. Assoc. India58512.

  • 77

    Mai T. D. Lee-Chang K. J. Jameson I. D. Hoang T. Cai N. B. A. Pham H. Q. (2021). Fatty acid profiles of selected microalgae used as live feeds for shrimp postlarvae in Vietnam.Aquac. J.12638. 10.3390/aquacj1010004

  • 78

    Manaffar R. Abdolahzadeh N. MoosaviToomatari G. Zare S. Sorgeloos P. Bossier P. et al (2020). Reproduction and life span characterization of Artemia urmiana in Lake Urmia, Iran (Branchiopoda: Anostraca).Iran J. Fish. Sci.1913441358.

  • 79

    Matsui H. Sasaki T. Kobari T. Waqalevu V. Kikuchi K. Ishikawa M. et al (2021). DHA accumulation in the polar lipids of the euryhaline copepod Pseudodiaptomus inopinus and its transfer to red sea bream Pagrus major larvae.Front. Mar. Sci.8:632876. 10.3389/fmars.2021.632876

  • 80

    McKinnon A. D. Duggan S. Nichols P. D. Rimmer M. A. Semmens G. Robino B. (2003). The potential of tropical paracalanid copepods as live feeds in aquaculture.Aquaculture22389106. 10.1016/s0044-8486(03)00161-3

  • 81

    Mejri S. C. Tremblay R. Audet C. Wills P. S. Riche M. (2021). Essential fatty acid requirements in tropical and cold-water marine fish larvae and juveniles.Front. Mar. Sci.8:557. 10.3389/fmars.2021.680003

  • 82

    Militz T. A. Leini E. Duy N. D. Q. Southgate P. C. (2018). Successful large-scale hatchery culture of sandfish (Holothuria scabra) using micro-algae concentrates as a larval food source.Aquac. Rep.92530. 10.1016/j.aqrep.2017.11.005

  • 83

    Miyajima Y. Masuda R. Kurihara A. Kamata R. Yamashita Y. Takeuchi T. (2011). Juveniles of threadsail filefish, Stephanolepis cirrhifer, can survive and grow by feeding on moon jellyfish Aurelia aurita.Fish. Res.774148. 10.1007/s12562-010-0305-8

  • 84

    Mona M. H. El-Gamal M. M. Razek F. A. Eldeen M. N. (2017). Utilization of Daphnia longispina as supplementary food for rearing Marsupenaeus japonicus post larvae.J. Mar. Biol. Assoc. India59:74.

  • 85

    Nagano N. Iwatsuki Y. Kamiyama T. Nakata H. (2000). Effects of marine ciliates on survivability of the first-feeding larval surgeonfish, Paracanthurus hepatus: laboratory rearing experiments.Hydrobiologia432149157. 10.1023/A:1004094825739

  • 86

    Nielsen B. L. H. Gréve H. V. S. Hansen B. W. (2021). Cultivation success and fatty acid composition of the tropical copepods Apocyclops royi and Pseudodiaptomus annandalei fed on monospecific diets with varying PUFA profiles.Aquac. Res.5211271138. 10.1111/are.14970

  • 87

    Nielsen R. Nielsen M. Abate T. G. Hansen B. W. Jepsen P. M. Nielsen S. L. et al (2017). The importance of live-feed traps–farming marine fish species.Aquac. Res.4826232641. 10.1111/are.13281

  • 88

    Oostlander P. C. van Houcke J. Wijffels R. H. Barbosa M. J. (2020). Optimization of Rhodomonas sp. under continuous cultivation for industrial applications in aquaculture.Algal Res.47:101889. 10.1016/j.algal.2020.101889

  • 89

    Pan Y. J. Déposé E. Souissi A. Hénard S. Schaadt M. Mastro E. et al (2020). Assessments of first feeding protocols on the larviculture of California grunion Leuresthes tenuis (Osteichthyes: Atherinopsidae).Aquac. Res.5130543058. 10.1111/are.14637

  • 90

    Pan Y. J. Sadovskaya I. Hwang J. S. Souissi S. (2018). Assessment of the fecundity, population growth and fatty acid composition of Apocyclops royi (Cyclopoida, Copepoda) fed on different microalgal diets.Aquac. Nutri.24970978. 10.1111/anu.12633

  • 91

    Pan Y. J. Souissi S. Souissi A. Wu C. H. Cheng S. H. Hwang J. S. (2014). Dietary effects on egg production, egg-hatching rate and female life span of the tropical calanoid copepod Acartia bilobata.Aquac. Res.4516591671. 10.1111/are.12113

  • 92

    Peter A. P. Koyande A. K. Chew K. W. Ho S. H. Chen W. H. Chang J. S. et al (2022). Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges.Renew. Sust. Energ. Rev.154:111852. 10.1016/j.rser.2021.111852

  • 93

    Ramos-Vega A. Rosales-Mendoza S. Bañuelos-Hernández B. Angulo C. (2018). Prospects on the use of Schizochytrium sp. to develop oral vaccines.Front. Microbiol.9:2506. 10.3389/fmicb.2018.02506

  • 94

    Rasdi N. W. Arshad A. Ikhwanuddin M. Hagiwara A. Yusoff F. M. Azani N. (2020). A review on the improvement of cladocera (Moina) nutrition as live food for aquaculture: Using valuable plankton fisheries resources.J. Environ. Biol.4112391248. 10.22438/jeb/41/5(SI)/MS_16

  • 95

    Rayner T. A. Jørgensen N. O. G. Blanda E. Wu C. H. Huang C. C. Mortensen J. et al (2015). Biochemical composition of the promising live feed tropical calanoid copepod Pseudodiaptomus annandalei (Sewell 1919) cultured in Taiwanese outdoor aquaculture ponds.Aquaculture4412534. 10.1016/j.aquaculture.2015.01.034

  • 96

    Rebolledo U. A. Sarma N. de Oca G. A. R. M. del Carmen, Monroy-Dosta M. Tello-Ballinas J. A. et al (2021). The potential use of the euryhaline rotifer Proales similis for larval rearing of the freshwater pike silverside Chirostoma estor estor.Aquaculture534:736246. 10.1016/j.aquaculture.2020.736246

  • 97

    Rehberg-Haas S. Meyer S. Lippemeier S. Schulz C. (2015). A comparison among different Pavlova sp. products for cultivation of Brachionus plicatilis.Aquaculture435424430. 10.1016/j.aquaculture.2014.10.029

  • 98

    Rhodes M. A. Phelps R. P. (2008). Evaluation of the ciliated protozoa, Fabrea salina as a first food for larval red snapper, Lutjanus campechanus in a large scale rearing experiment.J. Appl. Aquac.20120133. 10.1080/10454430802197383

  • 99

    Rønnestad I. Yúfera M. Ueberschär B. Ribeiro L. Sæle Ø Boglione C. (2013). Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research.Rev. Aquac.5S59S98. 10.1111/raq.12010

  • 100

    Safiin N. S. Z. Mustafa S. Ching F. F. Shapawi R. (2021). Palm oil-based enrichment diets for the rotifer, Brachionus plicatilis, improved the performance of Asian seabass (Lates calcarifer) larvae.Front. Mar. Sci.8:613312. 10.3389/fmars.2021.613312

  • 101

    Sales R. Derner R. B. Tsuzuki M. Y. (2019). Effects of different harvesting and processing methods on Nannochloropsis oculata concentrates and their application on rotifer Brachionus sp. cultures.J. Appl. Phycol.3136073615. 10.1007/s10811-019-01877-8

  • 102

    Sandeep K. P. Avunje S. Dayal J. S. Balasubramanian C. P. Sawant P. B. Chadha N. K. et al (2021). Efficiency of different microalgae as monospecific and bispecific diets in larval rearing of Penaeus indicus with special reference to growth, nutrient composition and antimicrobial activity of microalgae.Aquac. Res.5251465154. 10.1111/are.15382

  • 103

    Sandmann M. Smetana S. Heinz V. Rohn S. (2021). Comparative life cycle assessment of a mesh ultra-thin layer photobioreactor and a tubular glass photobioreactor for the production of bioactive algae extracts.Bioresour. Technol.340:125657. 10.1016/j.biortech.2021.125657

  • 104

    Santhanam P. Jeyaraj N. Jothiraj K. Ananth S. Kumar S. D. Pachiappan P. (2019). “Assessing the efficacy of marine copepods as an alternative first feed for larval production of tiger shrimp Penaeus monodon,” in Basic and Applied Zooplankton Biology, edsSanthanamP.BegumA.PachiappanP. (Singapore: Springer), 293303. 10.1007/978-981-10-7953-5_12

  • 105

    Santhosh B. Ranjan R. Raju S. S. Kalidas C. Gopakumar G. Gopalakrishnan A. et al (2018). “Cost estimate and financial analysis of a medium scale copepod culture unit,” in Culture Techniques of Marine Copepods, edsSanthoshB.AnilM. K.Muhammed AnzeerF.AneeshK. S.MijoV.GopakumarG.et al (Kerala: Indian Central Marine Fisheries Research Institute), 123131.

  • 106

    Santos M. R. Vieira N. Monteiro N. M. (2018). High temperatures disrupt Artemia franciscana mating patterns and impact sexual selection intensity.Estuar. Coast. Shelf Sci.207209214. 10.1016/j.ecss.2018.04.015

  • 107

    Scarpa J. (2002). General method for the production of developmentally-arrested bivalve trochophore larvae as a potential food for marine fish larvae.J. Appl. Aquac.12111. 10.1300/J028v12n04_01

  • 108

    Sellami I. Naceur H. B. Kacem A. (2020). Study of cysts biometry and hatching percentage of the brine shrimp Artemia salina (Linnaeus, 1758) from the Sebkha of Sidi El Hani (Tunisia) according to successive generations.Aquac. Stud.214146. 10.4194/2618-6381-v21_1_05

  • 109

    Sharawy Z. Z. Ashour M. Abbas E. Ashry O. Helal M. Nazmi H. et al (2020). Effects of dietary marine microalgae, Tetraselmis suecica, on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei.Aquac. Res.5122162228. 10.1111/are.14566

  • 110

    Shekarabi S. P. H. Mehrgan M. S. Razi N. Sabzi S. (2021). Biochemical composition and fatty acid profile of the marine microalga Isochrysis galbana dried with different methods.J. Microbiol. Biotechnol. Food Sci.2021521524.

  • 111

    Snell T. W. Johnston R. K. Matthews A. B. (2019). Utilizing Brachionus biodiversity in marine finfish larviculture.Hydrobiologia844149162. 10.1007/s10750-018-3776-8

  • 112

    Su C. J. Ju W. T. Chen Y. M. Chiang M. W. Hsieh S. Y. Lin H. J. et al (2021). Palmitic acid and long-chain polyunsaturated fatty acids dominate in mycelia of mangrove Halophytophthora and Salispina species in Taiwan.Bot. Mar.64503518. 10.1515/bot-2021-0030

  • 113

    Su H. M. Cheng S. H. Chen T. I. Su M. S. (2005). “Culture of copepods and applications to marine finfish larval rearing in Taiwan,” in Copepods in Aquaculture, edsLeeC. S.O’BryenP. J.MarcusN. H. (Oxford: Blackwell Publishing), 183194. 10.1002/9780470277522.ch14

  • 114

    Suantika G. Dhert P. Nurhudah M. Sorgeloos P. (2000). High-density production of the rotifer Brachionus plicatilis in a recirculation system: consideration of water quality, zootechnical and nutritional aspects.Aquac. Eng.21201213. 10.1016/S0144-8609(99)00031-X

  • 115

    Suantika G. Dhert P. Sweetman E. O’Brien E. Sorgeloos P. (2003). Technical and economical feasibility of a rotifer recirculation system.Aquaculture227173189. 10.1016/s0044-8486(03)00502-7

  • 116

    Tahir A. Ransangan J. (2021). Key selections for microalgae, the indispensable live feed in bivalve hatchery: a brief review.Egypt. J. Aquat. Biol. Fish.25821846. 10.21608/ejabf.2021.206882

  • 117

    Tarangkoon W. Mahae N. Tanyaros S. (2018). The effect of different feed types on the growth rate and biochemical composition of the marine ciliate Euplotes sp.J. Fish. Environ.422432.

  • 118

    Tato T. Beiras R. (2019). The use of the marine microalga Tisochrysis lutea (T-iso) in standard toxicity tests; comparative sensitivity with other test species.Front. Mar. Sci.6:488. 10.3389/fmars.2019.00488

  • 119

    Tayebati H. Pajoum Shariati F. Soltani N. Sepasi Tehrani H. (2021). Effect of various light spectra on amino acids and pigment production of Arthrospira platensis using flat-plate photobioreactor.Prep. Biochem. Biotechnol. [Epub Online ahead of print]. 10.1080/10826068.2021.1941102

  • 120

    Teiba I. Okunishi S. Yoshikawa T. Ikenaga M. El Basuini M. F. Santander-de Leon S. M. S. et al (2020). Use of purple non-sulfur photosynthetic bacteria (Rhodobacter sphaeroides) in promoting ciliated protozoan growth.Biocontrol. Sci.258189. 10.4265/bio.25.81

  • 121

    Tibbetts S. M. Patelakis S. J. Whitney-Lalonde C. G. Garrison L. L. Wall C. L. MacQuarrie S. P. (2020). Nutrient composition and protein quality of microalgae meals produced from the marine prymnesiophyte Pavlova sp. 459 mass-cultivated in enclosed photobioreactors for potential use in salmonid aquafeeds.J. Appl. Phycol.32299318. 10.1007/s10811-019-01942-2

  • 122

    Torres G. A. Merino G. E. Prieto-Guevara M. J. (2022). Continuous egg separation of the copepod Acartia tonsa. Implications for increasing adult density at an intensive level.Aquac. Rep.22:100995. 10.1016/j.aqrep.2021.100995

  • 123

    Turan G. Kling L. J. (2018). Size distribution, fatty acid composition and short-term storage studies on Blue mussel (Mytilus edulis) trochophores.Ege J. Fish. Aquat. Sci.35279287. 10.12714/egejfas.2018.35.3.07

  • 124

    Turcihan G. Okyar M. I. Zeybek Y. G. Eryalçın K. M. (2022). Effect of Different Feeds on Reproduction Performance, Nutritional Components and Fatty acid Composition of Cladocera Water Flea (Daphnia magna).New Jersey, NJ: Wiley. 10.1111/are.15759

  • 125

    Van Stappen G. Sui L. Hoa V. N. Tamtin M. Nyonje B. de Medeiros Rocha R. et al (2020). Review on integrated production of the brine shrimp Artemia in solar salt ponds.Rev. Aquac.1210541071. 10.1111/raq.12371

  • 126

    Vu M. T. T. Jepsen P. M. Jørgensen N. O. Hansen B. W. Nielsen S. L. (2019). Testing the yield of a pilot-scale bubble column photobioreactor for cultivation of the microalga Rhodomonas salina as feed for intensive calanoid copepod cultures.Aquac. Res.506371. 10.1111/are.13868

  • 127

    Vu N. U. Huynh T. G. (2020). Optimized live feed regime significantly improves growth performance and survival rate for early life history stages of pangasius catfish (Pangasianodon hypophthalmus).Fishes5:20. 10.3390/fishes5030020

  • 128

    Wakabayashi K. Nagai S. Tanaka Y. (2016a). The complete larval development of Ibacus ciliatus from hatching to the nisto and juvenile stages using jellyfish as the sole diet.Aquaculture450102107. 10.1016/j.aquaculture.2015.07.020

  • 129

    Wakabayashi K. Sato H. Yoshie-Stark Y. Ogushi M. Tanaka Y. (2016b). Differences in the biochemical compositions of two dietary jellyfish species and their effects on the growth and survival of Ibacus novemdentatus phyllosomas.Aquac. Nutr.222533. 10.1111/anu.12228

  • 130

    Wakabayashi K. Sato R. Ishii H. Akiba T. Nogata Y. Tanaka Y. (2012). Culture of phyllosomas of Ibacus novemdentatus (Decapoda: Scyllaridae) in a closed recirculating system using jellyfish as food.Aquaculture330162166. 10.1016/j.aquaculture.2011.12.005

  • 131

    Wang L. Wang S. Zeng C. Wang Y. Zeng C. (2021). Effects of food concentration and photoperiod on egg production, female life expectancy and population dynamics of the paracalanid copepod, Bestiolina amoyensis.Front. Mar. Sci.8:788744. 10.3389/fmars.2021.788744

  • 132

    Wang Q. Zeng J. Wang Y. Zhao J. Ma L. Shi Z. et al (2021). Alternations in the liver metabolome, skin and serum antioxidant function of silver pomfret (Pampus argenteus) is induced by jellyfish feeding.3 Biotech11110. 10.1007/s13205-021-02702-1

  • 133

    Wan-Mohtar W. A. A. Q. I. Ibrahim M. F. Rasdi N. W. Zainorahim N. Taufek N. M. (2021). Microorganisms as a sustainable aquafeed ingredient: A review.Aquac. Res.53746766. 10.1111/are.15627

  • 134

    Wilson J. M. Ignatius B. Santhosh B. P. Sawant P. B. Chadha N. K. (2021). Induced quiescence in eggs of the tropical calanoid copepod Acartia tropica: Effect of different storage conditions.Aquac. Res.5467474. 10.1111/are.15588

  • 135

    Wullur S. Sakakura Y. Hagiwara A. (2011). Application of the minute monogonont rotifer Proales similis de Beauchamp in larval rearing of seven-band grouper Epinephelus septemfasciatus.Aquaculture315355360. 10.1016/j.aquaculture.2011.02.025

  • 136

    Wurm H. Sandmann M. (2021). Establishment of a simple method to evaluate mixing times in a plastic bag photobioreactor using image processing based on freeware tools.BMC Res. Notes14:470. 10.1186/s13104-021-05892-2

  • 137

    Yang Y. Du L. Hosokawa M. Miyashita K. (2020). Total lipidcontent, lipid class and fatty acid composition of ten species of microalgae.J. Oleo Sci.6911811189. 10.5650/jos.ess20140

  • 138

    Yúfera M. Darias M. J. (2007). The onset of exogenous feeding in marine fish larvae.Aquaculture2685363. 10.1016/j.aquaculture.2007.04.050

  • 139

    Zeng C. Shao L. Ricketts A. Moorhead J. (2018). The importance of copepods as live feed for larval rearing of the green mandarin fish Synchiropus splendidus.Aquaculture4916571. 10.1016/j.aquaculture.2018.03.011

Summary

Keywords

marine larviculture, live feed, microalgae, ciliate, rotifer, Artemia , copepod

Citation

Pan Y-J, Dahms H-U, Hwang J-S and Souissi S (2022) Recent Trends in Live Feeds for Marine Larviculture: A Mini Review. Front. Mar. Sci. 9:864165. doi: 10.3389/fmars.2022.864165

Received

28 January 2022

Accepted

17 February 2022

Published

30 March 2022

Volume

9 - 2022

Edited by

Hüseyin Sevgili, Isparta University of Applied Sciences, Turkey

Reviewed by

Kamil Mert Eryalçın, Istanbul University, Turkey

Updates

Copyright

*Correspondence: Yen-Ju Pan,

This article was submitted to Marine Fisheries, Aquaculture and Living Resources, a section of the journal Frontiers in Marine Science

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics