ORIGINAL RESEARCH article
Front. Neuroimaging
Sec. Neuroimaging Analysis and Protocols
Volume 4 - 2025 | doi: 10.3389/fnimg.2025.1554769
A Deep Neural Network for Adaptive Spatial Smoothing of Task fMRI Data
Provisionally accepted- 1Cleveland Clinic Lou Ruvo Center for Brain Health - Las Vegas, Las Vegas, Nevada, United States
- 2Cleveland Clinic, Cleveland, Ohio, United States
- 3University of Colorado Boulder, Boulder, Colorado, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Over the past decade, functional magnetic resonance imaging (fMRI) has emerged as a widely adopted in vivo imaging technique for examining neural activity in the brain. A common preprocessing step in fMRI analysis is spatial smoothing, which helps in detecting cluster-like active regions. The use of a heuristically selected Gaussian filter for spatial smoothing is frequently preferred due to its simplicity and computational efficiency. Neurons in the cerebral cortex are located within a thin sheet of gray matter at the surface of the brain, and the human brain's gyrification results in a complex gray matter anatomy. For task-based fMRI activation analysis, isotropic Gaussian smoothing can reduce spatial specificity, introducing spatial blurring artifacts where inactive voxels near active regions are mistakenly identified as active. This blurring is beneficial for group-level analysis as it helps mitigate anatomical variability across subjects and inaccuracies in spatial normalization. However, it poses challenges in subject-level analysis, particularly in clinical applications such as presurgical planning and fMRI fingerprinting, which demand high spatial specificity. Previous studies have proposed several adaptive spatial smoothing techniques to address these issues. In this study, we introduce a versatile deep neural network (DNN) that builds on the strengths of previous approaches while overcoming their limitations. This method can incorporate additional neighboring voxels for estimating optimal spatial smoothing without significantly increasing computational costs, making it suitable for ultrahigh-resolution (sub-millimeter) task fMRI data. Furthermore, the proposed neural network incorporates brain tissue properties, enabling more accurate characterization of brain activation at the individual level.
Keywords: functional MRI, adaptive spatial smoothing, Deep neural network, brain activation, task fMRI analysis
Received: 02 Jan 2025; Accepted: 31 Mar 2025.
Copyright: © 2025 Yang, Zhuang, Lowe and Cordes, PhD. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Dietmar Cordes, PhD, Cleveland Clinic Lou Ruvo Center for Brain Health - Las Vegas, Las Vegas, 89106, Nevada, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.