ORIGINAL RESEARCH article
Front. Neurorobot.
Volume 19 - 2025 | doi: 10.3389/fnbot.2025.1616919
Multimodal Fusion Image Enhancement Technique and CFEC-YOLOv7 for Underwater Target Detection Algorithm Research
Provisionally accepted- Wuxi City College of Vocational Technology, Wuxi, Liaoning Province, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The underwater environment is more complex than that on land, resulting in severe static and dynamic blurring in underwater images, reducing the recognition accuracy of underwater targets and failing to meet the needs of underwater environment detection. Firstly, for the static blurring problem, we propose an adaptive color compensation algorithm and an improved MSR algorithm. Secondly, for the problem of dynamic blur, we adopt the Restormer network to eliminate the dynamic blur caused by the combined effects of camera shake, camera out-of-focus and relative motion displacement, etc. Then, through qualitative analysis, quantitative analysis and underwater target detection on the enhanced dataset, the feasibility of our underwater enhancement method is verified. Finally, we propose a target recognition network suitable for the complex underwater environment. The local and global information is fused through the CCBC module and the ECLOU loss function to improve the positioning accuracy. The FasterNet module is introduced to reduce redundant computations and parameter counting. The experimental results show that the CFEC-YOLOv7 model and the underwater image enhancement method proposed by us exhibit excellent performance, can better adapt to the underwater target recognition task, and have a good application prospect.
Keywords: underwater image, Multi-weight fusion, CFEC-YOLOv7, Image Enhancement, multimodal fusion
Received: 23 Apr 2025; Accepted: 28 May 2025.
Copyright: © 2025 Qiu and Shi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Xiaorong Qiu, Wuxi City College of Vocational Technology, Wuxi, 214153, Liaoning Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.