Abstract
Disease suppressive soils offer effective protection to plants against infection by soil-borne pathogens, including fungi, oomycetes, bacteria, and nematodes. The specific disease suppression that operates in these soils is, in most cases, microbial in origin. Therefore, suppressive soils are considered as a rich resource for the discovery of beneficial microorganisms with novel antimicrobial and other plant protective traits. To date, several microbial genera have been proposed as key players in disease suppressiveness of soils, but the complexity of the microbial interactions as well as the underlying mechanisms and microbial traits remain elusive for most disease suppressive soils. Recent developments in next generation sequencing and other ‘omics’ technologies have provided new insights into the microbial ecology of disease suppressive soils and the identification of microbial consortia and traits involved in disease suppressiveness. Here, we review the results of recent ‘omics’-based studies on the microbial basis of disease suppressive soils, with specific emphasis on the role of rhizosphere bacteria in this intriguing microbiological phenomenon.
Introduction
Disease suppressive soils are the best examples of microbiome-mediated protection of plants against root infections by soil-borne pathogens. Disease suppressive soils were originally defined by Baker and Cook (1974) as “soils in which the pathogen does not establish or persist, establishes but causes little or no damage, or establishes and causes disease for a while but thereafter the disease is less important, although the pathogen may persist in the soil.” In contrast, disease readily occurs in non-suppressive (or conducive) soils where abiotic and biotic conditions are favorable to the pathogen. Two types of disease suppressiveness are distinguished. General suppressiveness of soils is attributed to the activity of the collective microbial community and is often associated with competition for available resources (Mazzola, 2002; Weller et al., 2002). General suppressiveness of soils can be boosted by addition of organic matter (Bonanomi et al., 2010; Klein et al., 2013; Vitullo et al., 2013; Postma and Schilder, 2015; Mazzola and Freilich, 2016; Tomihama et al., 2016). Specific suppressiveness is due to the concerted activities of specific groups of microorganisms that interfere with some stage of the life cycle of the soil-borne pathogen. Specific suppressiveness of soils can, in contrast to general suppressiveness, be transferred to conducive soils by mixing small amounts (1–10% w/w) of the suppressive soil into the conducive soil (Mendes et al., 2011; Raaijmakers and Mazzola, 2016; van der Voort et al., 2016). The characteristics of general and specific suppressiveness have remarkable similarities with the innate and adaptive immune responses in animals (Raaijmakers and Mazzola, 2016). That is, the innate immune response in animals gives a primary and non-specific defensive response similar to what occurs in general suppressiveness of soils. The adaptive immune response in animals and specific disease suppression in soils both require specialized cells to suppress the pathogen, require time and have a memory (Lapsansky et al., 2016; Raaijmakers and Mazzola, 2016). Hence, a mechanistic understanding of the soil immune response may enable us to engineer the soil and plant microbiomes to enrich for specific groups of antagonistic microbes and activities as a sustainable alternative to control plant diseases and to enhance crop productivity (Berendsen et al., 2012; Mendes et al., 2013; Mueller and Sachs, 2015). Here, we will first highlight the most important findings of past studies on microbes and mechanisms involved in specific disease suppressiveness of soils. We will then review recent findings from ‘omics’-based studies on the role of soil and rhizosphere bacteria in this intriguing microbiological phenomenon and finally provide a brief outlook.
Brief History of Disease Suppressive Soils
The first suppressive soil was reported in 1892 by Atkinson for Fusarium wilt disease of cotton (Atkinson, 1892; Scher and Baker, 1980; Amir and Alabouvette, 1993; Lemanceau et al., 2006). Since then, specific suppressiveness of soils has been reported for a range of pathogens, including fungi such as Gaeumannomyces graminis var tritici (Raaijmakers and Weller, 1998; De Souza et al., 2003), Fusarium oxysporum (Scher and Baker, 1980; Alabouvette, 1986; Klein et al., 2013), Fusarium solani (Burke, 1954; Kobayashi and Komada, 1995), Rhizoctonia solani (Wijetunga and Baker, 1979; Chern and Ko, 1989; Postma et al., 2010; Mendes et al., 2011), Verticillium dahliae (Keinath and Fravel, 1992), Pyrenochaeta lycopersici (Workneh and Van Bruggen, 1994), Sclerotinia sclerotiorum (Rodríguez et al., 2015), Alternaria triticina (Siddiqui, 2007), oomycetes such as Phytophthora cinnamomi (Broadbent and Baker, 1974), Pythium ultimum (Martin and Hancock, 1986), and Aphanomyces euteiches (Persson and Olsson, 2000), bacteria such as Streptomyces scabies (Menzies, 1959; Weinhold et al., 1964; Kinkel et al., 2012; Meng et al., 2012; Rosenzweig et al., 2012), Ralstonia solanacearum (Shiomi et al., 1999) and Agrobacterium radiobacter var tumefaciens (New and Kerr, 1972), protists such as Plasmodiophora brassicae (Hjort et al., 2007) and nematodes such as Meloidogyne incognita (Pyrowolakis et al., 2002; Giné et al., 2016), Heterodera schachtii (Olatinwo et al., 2006), Heterodera glycines (Song et al., 2016), and Criconemella xenoplax (Kluepfel et al., 1993).
The microbiological basis of disease suppressive soils was first addressed by Henry (1931a,b) and later widely demonstrated in other studies via soil pasteurization, application of biocides (Scher and Baker, 1980; Alabouvette, 1986; Mazzola, 2002; Weller et al., 2002; Garbeva et al., 2004) and via soil transplantation (Scher and Baker, 1980; Alabouvette, 1986; Wiseman et al., 1996; Weller et al., 2002; Mendes et al., 2011). Furthermore, higher microbial diversities have been detected in disease suppressive soils than in conducive soils (Garbeva et al., 2006). Following these observations and approaches, various microbes and underlying mechanisms involved in specific disease suppressiveness were proposed and, in several cases, identified. The mechanisms underlying specific suppressiveness identified in these early studies include competition, parasitism and antibiosis (Kloepper et al., 1980; Scher and Baker, 1980; Neeno-Eckwall et al., 2001; Mazzola, 2002; Alabouvette et al., 2009; Junaid et al., 2013; Jambhulkar et al., 2015). For Fusarium wilt suppressive soils, competition for carbon by non-pathogenic F. oxysporum (Alabouvette, 1986; Couteaudier and Alabouvette, 1990; Neeno-Eckwall et al., 2001) and siderophore-mediated competition for iron by rhizosphere bacteria (Kloepper et al., 1980; Scher and Baker, 1982; Lemanceau et al., 1988) were shown to be key mechanisms. Addition of siderophore-producing Pseudomonas from suppressive soils or their siderophores into conducive soils rendered these soils suppressive to F. oxysporum and also G. graminis, the take-all pathogen of wheat and barley (Kloepper et al., 1980; Scher and Baker, 1982; Lemanceau et al., 1988; Couteaudier and Alabouvette, 1990). The role of parasitism in disease suppressive soils has been studied for several soil-borne pathogens including the fungi S. sclerotiorum (Gerlagh et al., 1999; Rey et al., 2005; Li et al., 2006; Whipps et al., 2008), S. minor (Partridge et al., 2006), R. solani (Chet et al., 1981; Velvis and Jager, 1983; van den Boogert et al., 1989), F. oxysporum (Toyota and Kimura, 1993), and Cochliobolus spp. (Fradkin and Patrick, 1985), and the oomycetes P. ultimum and P. aphanidermatum (Chet et al., 1981). Parasitic microorganisms identified in these studies were mostly fungi (e.g., Trichoderma spp., Coniothyrium minitans, Verticillium biguttatum) or oomycetes (Pythium oligandrum). Despite the widespread distribution of rhizosphere bacteria with parasitic traits, such as the production of cell wall degrading enzymes, there are no studies that have conclusively demonstrated their role in specific disease suppressiveness of soils. For example, strains of Stenotrophomonas maltophilia can suppress the oomycete P. ultimum and the nematode Bursaphelenchus xylophilus via the production of proteases (Dunne et al., 1997; Huang et al., 2009). Likewise, Pseudomonas fluorescens CHA0 reduces root-knot caused by M. incognita, at least in part, via the production of a protease (Siddiqui et al., 2005). Furthermore, bacteria within the genus Collimonas produce chitinases and have been reported to feed on fungi (De Boer et al., 2001). Whether these or other mycoparasitic rhizobacterial genera are enriched or more active in disease suppressive soils is, to our knowledge, not yet known. Antibiosis, defined as the inhibition of the growth and/or activity of one organism by another organism via the production of specific or non-specific metabolites (Thomashow and Pierson, 1991), is the most widely studied mechanism of disease suppressive soils. Among the antibiotics with a role in disease suppressive soils, 2,4-diacetylphloroglucinol (DAPG) and phenazines (PHZ) have been studied in more depth (Haas and Defago, 2005; Raaijmakers and Mazzola, 2012). Both DAPG and PHZ are produced by several strains of (fluorescent) Pseudomonas species associated with soils suppressive to take-all of wheat or Fusarium wilt of flax (Raaijmakers and Weller, 1998; Weller et al., 2002; Mazurier et al., 2009). DAPG and pyrrolnitrin were shown to be involved in suppression of R. solani (Latz et al., 2012), whereas PHZ and pyoluteorin were associated with suppression of Thielaviopsis basicola (Laville et al., 1992; Haas and Defago, 2005). Volatile compounds with antimicrobial activities have also been proposed to play a role in disease suppressiveness of soils. Early studies indicated a role of ammonia (Ko et al., 1974; Howell et al., 1988) and hydrogen cyanide (Voisard et al., 1989) in disease suppressiveness.
Old and New Approaches to Study Disease Suppressive Soils
After demonstrating the microbial basis of disease suppressiveness of soils by heat treatment, biocides and/or soil transplantations, the next steps taken in past and several present studies typically comprises untargeted, large-scale isolation of microbes from bulk soil, rhizosphere or endosphere of plants grown in disease suppressive soils, followed by testing their activities against the target pathogen both in vitro (i.e., plate assays) and in vivo (i.e., introduction into conducive soils). Following this line of research, several microbial genera have been proposed for their role in specific disease suppressiveness. These include (fluorescent) Pseudomonas (Kloepper et al., 1980; Scher and Baker, 1980, 1982; Wong and Baker, 1984; Lemanceau and Alabouvette, 1991; Raaijmakers and Weller, 1998; De Souza et al., 2003; Perneel et al., 2007; Mazurier et al., 2009; Mendes et al., 2011; Michelsen and Stougaard, 2011), Streptomyces (Liu et al., 1996; Cha et al., 2016), Bacillus (Sneh et al., 1984; Cazorla et al., 2007; Abdeljalil et al., 2016; Zhang et al., 2016), Paenibacillus (Haggag and Timmusk, 2008), Enterobacter (Schisler and Slininger, 1994; Abdeljalil et al., 2016), Alcaligenes (Yuen and Schroth, 1986), Pantoea (Schisler and Slininger, 1994), non-pathogenic F. oxysporum (Sneh et al., 1987; Couteaudier and Alabouvette, 1990; Larkin et al., 1996; Larkin and Fravel, 2002; Nel et al., 2006; Mazurier et al., 2009; Raaijmakers et al., 2009), Trichoderma (Harman et al., 1980; Liu and Baker, 1980; Chet and Baker, 1981; Hadar et al., 1984; Smith et al., 1990; Mghalu et al., 2007), Penicillium janczewskii (Madi and Katan, 1998), V. biguttatum (Jager and Velvis, 1983; Velvis and Jager, 1983), Pochonia chlamydosporia (Yang et al., 2012), Clonostachys/Gliocadium (Smith et al., 1990; Rodríguez et al., 2015) and P. oligandrum (Martin and Hancock, 1986).
Although several microorganisms efficiently controlled the target pathogen under in vitro or greenhouse conditions, the majority failed under field environments. This inconsistency in in vivo activity has been mainly attributed to an insufficient ability to survive and colonize the rhizosphere or to express their protective characteristics under field conditions at the right time and right place (Alabouvette et al., 2009). Also, disease suppressiveness is generally thought to be attributed to microbial consortia rather than to one microbial species only. For example, PHZ-producing Pseudomonas isolated from a Fusarium wilt suppressive soil could suppress Fusarium wilt disease of flax only when re-introduced with non-pathogenic F. oxysporum Fo47 (Mazurier et al., 2009). Hence, application of synthetic communities composed of different microbial species with different modes of action has been suggested as an alternative to improve the consistency of controlling the pathogen in vivo (Großkopf and Soyer, 2014; Lebeis et al., 2015; Mazzola and Freilich, 2016).
To obtain a more comprehensive picture of the microbial consortia and specific activities operating in disease suppressive soils, several new, cultivation-independent technologies are now available, including community profiling by restriction fragment length polymorphism (RFLP) or denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), DNA-Stable Isotope Probing (DNA-SIP), PhyloChip analysis, 16S- or ITS-amplicon sequencing, shotgun sequencing of metagenomic DNA, metatranscriptomics, metaproteomics and metabolomics. For example, bacterial and fungal diversity analyzed by DGGE and subsequent sequencing of the isolated bands showed a higher abundance of the fungi Aspergillus penicillioides, Eurotium sp., Ganoderma applanatum and Cylindrocarpon olidum and the bacteria Solirubrobacter soli, Ochrobactrum anthropi, Anderseniella sp., and Pseudomonas koreensis in soils suppressive to M. hapla (Adam et al., 2014). Also dominance of Fusarium spp., Cladosporium sphaerospermum and Aspergillus versicolor in a soil suppressive to H. glycines (Song et al., 2016) and higher abundances of the bacteria Sphingobacteriales, Flavobacteriaceae, Xanthomonadaceae, or Cyanobacteria and the fungi Fusarium, Preussia, Mortierella, or Cladosporium in soils suppressive to Meloidoyne spp. (Giné et al., 2016) were observed. Additionally, Cretoiu et al. (2013) analyzed the bacterial and fungal communities of a soil that became more suppressive toward V. dahliae upon addition of chitin and found, based on DGGE and qPCR analyses, that suppressiveness was mainly associated with higher abundances of Oxalobacteraceae and Actinobacteria and expression of the chitinase gene chiA. Using PhyloChip analyses of the rhizobacterial community compositions in soils suppressive or conducive to the fungal root pathogen R. solani, Mendes et al. (2011) and Chapelle et al. (2015) revealed that suppressiveness is not due to the exclusive presence or absence of specific rhizobacterial families but due to a change in their relative abundance and specific activities. The results of these and other recent studies are summarized in Table 1 and discussed below with emphasis on the role of soil and rhizosphere bacteria.
Table 1
| Pathogen | Crop | Location | Technique | Microbial taxa∗ | Reference |
|---|---|---|---|---|---|
| Gaeumannomyces graminis var. tritici | Wheat | New Zealand | 16S - DGGE | Pseudomonas putida, Pseudomonas fluorescens, Nocardioides oleivorans, Streptomyces bingchengensis, Terrabacter | Chng et al., 2015 |
| ITS - DGGE | Gibberella zeae, Penicillium echinulatum, Penicillium allii, Fusarium lateritium, Mortierella elongata, Microdochium bolleyi | ||||
| Gaeumannomyces graminis var. tritici | Barley | Germany | 16S - Microarray | Proteobacteria (Rhizobiaceae, Rhizobium/Agrobacterium, Methylobacterium, Acidiphilium, Variovorax, Burkholderia, Alcaligenaceae, Xanthomonadaceae) | Schreiner et al., 2010 |
| Gaeumannomyces graminis var. tritici | Wheat | France | 16S - Microarray | Planctomycetes, Nitrospira, Acidobacteria, Chloroflexi, Proteobacteria (Azospirillum, Acidocella/Acidiphillium, Burkholderia, Methylophilus, Geobacter, Campylobacter), Firmicutes (Thermoanaerobacter, Lactobacillus), Cyanobacteria (Lyngbya) | Sanguin et al., 2009 |
| Fusarium oxysporum | Vanilla | China | 16S - Amplicon | Acidobacteria (groups Gp2, Gp1, Gp3, Gp13), Verrucomicrobia, Actinobacteria (Ktedonobacter), Firmicutes | Xiong et al., 2017 |
| ITS - Amplicon | Zygomycota (Mortierella), Basidiomycota (Ceratobasidium, Gymnopus). Cylindrocladium, Staphylotrichum, Gliocladiopsis | ||||
| Fusarium oxysporum | Strawberry | Korea | 16S - Amplicon | Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes, Nitrospira, Chloroflexi | Cha et al., 2016 |
| Fusarium oxysporum | Vanilla | China | 16S - Amplicon | Bacteroidetes, Firmicutes (Bacillus), Actinobacteria, Bradyrhizobium | Xiong et al., 2015 |
| ITS - Amplicon | Basidiomycota, Trichoderma asperellum | ||||
| Fusarium oxysporum f. sp. cubense | Banana | China | 16S - Amplicon | Bacillaceae, Hyphomicrobiaceae, Gaiellaceae, Bradyrhizobiaceae, Sphingomonadaceae, Rhodospirillaceae, Paenibacillaceae, Nitrospiraceae, Streptomycetaceae | Xue et al., 2015 |
| Fusarium oxysporum f. sp. cubense | Banana | China | 16S - Amplicon | Acidobacteria (Gp4, Gp5), Chthomonas, Pseudomonas, Tumebacillus, | Shen et al., 2015 |
| Fusarium oxysporum f. sp. vasinfectum | Cotton | China | 16S - Amplicon | Comamonadaceae, Oxalobacteraceae, Methylophilaceae, Rhodocyclaceae, Xanthomonadaceae, Opitutaceae, Verrucomicrobiaceae | Li et al., 2015 |
| ITS - Amplicon | Glomerales | ||||
| Globodera pallida | Potato | Germany | 16S - Amplicon | Proteobacteria (Burkholderia, Ralstonia, Devosia, Rhizobium), Actinobacteria (Streptomyces), Bacteroidetes (Sphingobacteria, Flavobacteria) | Eberlein et al., 2016 |
| ITS - Amplicon | Ascomycota [Sordariomycetes (Colletotrichum), Dothideomycetes, Eumycetes (Penicillium)], Basidiomycota (Malasezzia) | ||||
| Heterodera glycines | Soybean | China | ITS - DGGE | Fusarium spp., Cladosporium sphaerospermum, Aspergillus versicolor | Song et al., 2016 |
| Meloidogyne spp. | Rotation zucchini, tomato, radish/spinach or tomato, zucchini, cucumber | Spain | 16S - DGGE | Bacteroidetes (Sphingobacteriales, Flavobacterium, Chryseobacterium, KD3-93, Flexibacter), Proteobacteria (Steroidobacter, Lysobacter, Methylobacterium) | Giné et al., 2016 |
| ITS - DGGE | Ascomycota (Pseudaleuria, Fusarium, Preussia, Ctenomyces, Cladosporium, Stachybotrys, Pseudallescheria, Heydenia), Basidiomycota (Psathyrella, Coprinellus), Zygomycota (Mortierella) | ||||
| Meloidogyne hapla | White clover | New Zealand | ITS - Amplicon | Orbiliomycetes | Bell et al., 2016 |
| Meloidogyne hapla | Lettuce | Germany | 16S - Amplicon | Rothia amarae, Malikia spinosa, Shigella, Janthinobacterium lividum, Geobacillus stearothermophilus, Pseudomonas kilonensi, Gemmatimonadetes, Rhodospirillaceae, Peptoniphilus gorbachii, Clostridium disporicum, Mycoplasma wenyonii, Ochrobactrum/Brucella, Hirschia maritima, Haematobacter missouriensis, Paracoccus yeei, Neisseria mucosa, Enhydrobacter aerosaccus | Adam et al., 2014 |
| 16S - DGGE | Staphylococcus, Micrococcus, Bacillus, Rhizobium phaseoli, Bosea, Solirubrobacter soli, Ochrobactrum anthropi, Anderseniella, Pseudomonas koreensis, Pseudomonas asplenii, Pseudomonas tuomuerensis, Pseudomonas jessenii, Pseudomonas taetrolens | ||||
| ITS - DGGE | Aspergillus penicillioides, Cryptococcus pseudolongus, Chaetomium globosum, Eurotium, Davidiella, Trichosporonales, Cylindrocarpon olidum, Rhizophydium, Malassezia restricta, Arthopyreniaceae, Ganoderma applanatum, Cladosporium cladosporioides, Cryptococcus, Mortierella | ||||
| Rhizoctonia solani AG2-2IIIB | Sugar beet | Netherlands | 16S - Microarray | Streptomycetaceae, Micrococcaceae, Mycobacteriaceae, Solibacteriaceae | van der Voort et al., 2016 |
| Rhizoctonia solani AG2-2IIIB | Sugar beet | Netherlands | Metagenome | Oxalobacteraceae, Burkholderiaceae, Sphingobacteriaceae, Sphingomonadaceae, Caulobacteraceae, Planctomycetaceae, Paenibacillaceae, Phyllobacteriaceae, Verrucomicrobia subdivision 3, Polyangiaceae | Chapelle et al., 2015 |
| Metatranscriptome | Oxalobacteraceae, Sphingobacteriaceae, Burkholderiaceae, Alcaligenaceae, Cystobacteraceae, Sphingomonadaceae, Cytophagaceae, Comamonadaceae, Verrucomicrobia subdivision 3 | ||||
| Rhizoctonia solani AG2-2IIIB | Sugar beet | Netherlands | 16S - Microarray | Proteobacteria (Pseudomonadaceae, Burkholderiaceae, Xanthomonadaceae, Firmicutes (Lactobacillae), Actinobacteria | Mendes et al., 2011 |
| Rhizoctonia solani AG3 | Potato | Greenland | 16S - Amplicon | Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria | Michelsen et al., 2015 |
| Rhizoctonia solani AG8 | Wheat | Australia | 16S - Microarray | Proteobacteria (Asaia, Cystobacterineae), Firmicutes (Paenibacillus borealis). Cyanobacteria, Bacteroidetes, Actinobacteria | Donn et al., 2014 |
| Rhizoctonia solani AG8 | Wheat | Australia | 28S - Amplicon | Xylariaceae (Xylaria), Bionectriaceae (Bionectria), Hypocreaceae, Eutypa, Anthostomella, Chaetomium, Corynascus, Microdiplodia | Penton et al., 2014 |
| Rhizoctonia solani AG8 | Wheat | United States | 16S - Amplicon | Acidobacteria (Gp1, Gp3, Gp4, Gp7), Burkholderia, Mesorhizobium, Dyella, Actinobacteria, Flavobacterium, Gemmatimonas | Yin et al., 2013 |
| Streptomyces scabies | Potato | United States | 16S - Amplicon | Acidobacteria groups 4 and 6, unclassified Bacilli, Nocardioidaceae, Pseudomonadaceae, Lysobacter, Rhizobium | Rosenzweig et al., 2012 |
| Thielaviopsis basicola | Tobacco | Switzerland | 16S - Microarray | Gluconacetobacter, Sphingomonadaceae, Azospirillum, Agrobacterium, Aminobacter, Methylobacterium, Ochrobactrum | Kyselková et al., 2014 |
| Thielaviopsis basicola | Rotation maize, wheat, alfalfa, pasture | Switzerland | 16S - Microarray | Burkholderia, Eikenella/Neisseria, Paenibacillus, Flavobacterium | Almario et al., 2013 |
| Thielaviopsis basicola | Tobacco | Switzerland | 16S - Microarray | Fluorescent Pseudomonas,Sphingomonadaceae, Gluconacetobacter, Azospirillum lipoferum, Nitrospira/Nitrosovibrio, Comamonas, Burkholderia, Herbaspirillum seropedicae, Xanthomonadaceae, Stenotrophomonas/Xanthomonas, Photorhabdus, Methylosarcina, Methylomonas, Polyangiaceae, Agromyces, Collinsella, Paenibacillus alginolyticus, Lyngbya, Acidobacteria | Kyselková et al., 2009 |
| Verticillium dahliae | Rotation potato, lily, wheat, carrot, maize | Netherlands | 16S - DGGE | Oxalobacteraceae (Duganella violaceinigra, Massilia plicata), Actinobacteria | Cretoiu et al., 2013 |
Summary of microbial taxa associated with disease suppressive soils and identified by different cultivation-independent techniques.
∗ Microbial taxa more abundant in disease suppressive soil.
New Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils
Several ‘omics’-based studies have been conducted recently to compare the microbial (mainly bacterial) community composition of soils suppressive or conducive for specific plant pathogens, including F. oxysporum, G. graminis var. tritici, T. basicola, R. solani, S. scabies, or M. hapla. A wide range of bacterial taxa were found in higher abundance in suppressive soils (Table 1). With regard to fungi, Penton et al. (2014) further revealed that differences associated with disease suppressiveness of soils to R. solani on wheat were attributed to less than 40 fungal genera, including a number of endophytic species and mycoparasites. Among the fungi most frequently associated with disease suppressive soils to other pathogens are Mortierella, Trichoderma, Fusarium, and Malasezzia (Table 1). Recently, Poudel et al. (2016) highlighted the importance of constructing microbial networks to determine microbial community structure and assemblage for disease management. Documenting differences in relative abundance between bacterial and/or fungal communities in suppressive and conducive soils by network analyses can be highly instrumental to zoom in on specific microbial consortia. However, these descriptive analyses need to be combined with other techniques to pinpoint the specific microbial traits involved in suppressiveness and to distinguish between cause and effect.
Mechanistically, recent studies pointed to antimicrobial volatiles, including sesquiterpenes (Minerdi et al., 2009), methyl 2-methylpentanoate and 1,3,5-trichloro-2-methoxy benzene (Cordovez et al., 2015), 2-methylfuran, 2-furaldehyde, 2-(methythio)benzo thiazole and murolool (Hol et al., 2015) for their potential role in disease suppressive soils. In these studies, however, these volatile compounds were detected under in vitro conditions and their production in vivo should be validated to provide more conclusive proof of the role of antimicrobial volatiles in disease suppressiveness of soils. Nevertheless, its validation in situ has technical challenges since volatile-producing microorganisms should be positioned in their ecological context (the rhizosphere) but also physically separated from the pathogen to exclude the role of compounds other than volatiles. Among the antimicrobial peptides, specific emphasis has been given in recent studies to the role of lipopeptides in disease suppressive soils. In independent studies, the two structurally similar, chlorinated lipopeptides thanamycin and nunapeptin were shown to contribute to suppressiveness of soils against the fungal root pathogen R. solani (Mendes et al., 2011; Watrous et al., 2012; Michelsen et al., 2015). Furthermore, using a combination of different techniques, Cha et al. (2016) elegantly revealed that the production of the thiopeptide conprimycin by Streptomyces played a role in a soil suppressive to Fusarium wilt of strawberry. Next-generation sequencing analyses revealed an increase of Actinobacteria in this suppressive soil leading to the isolation and genomic characterization of Streptomyces isolate S4-7. Genome mining of Streptomyces S4-7 pointed at the production of conprimycin as a metabolite involved in suppressing Fusarium. A chemogenomic approach further suggested that conprimycin acts by interfering with fungal cell wall biosynthesis (Cha et al., 2016).
To further target the active microbial communities and to identify other microbial traits involved in disease suppressive soils, DNA-SIP (Radajewski et al., 2000) or metatranscriptomics (Ofek-Lalzar et al., 2014; Ofek et al., 2014; Tkacz et al., 2015) should be applied and/or combined. For example, by using metagenomic approaches Hjort et al. (2014) obtained a clone from a soil suppressive to club-root disease on cabbage producing the antifungal chitinase Chi18H8, and Cretoiu et al. (2015) obtained a clone producing the salt-tolerant chitinase 53D1 from a soil suppressive to V. dahliae. Within the METACONTROL project, several novel polyketide antibiotics were identified (Van Elsas et al., 2008). Furthermore, Chapelle et al. (2015) combined metagenomic and metatranscriptomic analyses to resolve the transcriptional changes in the rhizobacterial community of sugar beet plants in a Rhizoctonia-suppressive soil challenged with the fungal pathogen. They found that upon pathogen exposure, stress-related genes were upregulated in rhizobacteria belonging to the Oxalobacteraceae, Sphingobacteriaceae, Burkholderiaceae, Alcaligenaceae, Cystobacteraceae, Sphingomonadaceae, Cytophagaceae, Comamonadaceae, and Verrucomicrobia. Based on these results they proposed a model in which the fungal pathogen secretes oxalic and phenylacetic acid during colonization of the root system, thereby exerting oxidative stress in the rhizobacterial community as well as in the plant. This stress response in turn leads to the activation of survival strategies of the rhizobacterial community leading to enhanced motility, biofilm formation and the production of yet unknown secondary metabolites. Collectively, these recent studies exemplify that combining different approaches and technologies allows a more in-depth analysis of the microbial and chemical ecology of disease suppressive soils, as depicted in Figure 1.
FIGURE 1

Schematic overview of currently available approaches involving microbiological, molecular, chemical and bioinformatic methods that can be adopted and integrated to generate a more complete picture of the microbial consortia and mechanisms involved in disease suppressive soils.
Future Perspectives
In the early days of research on disease suppressive soils, several valuable insights were obtained for the role of individual microbial genera (Weller et al., 2002). In most disease suppressive soils, however, suppressiveness appears to be due to the concerted activities of multiple microbial genera working together at specific sites or operating at different stages of the infection process of the pathogen. Understanding the temporal and spatial microbial dynamics of disease suppressive soils as well as the corresponding modes of action will be needed to facilitate the development of effective, consistent and durable disease management tools. A model predicting Fusarium wilt suppressiveness, including several soil factors combined with the abundance of three keystone microbial taxa, was designed recently by Trivedi et al. (2017) to support the choice of crops or cultivars referred to as “Know before you Sow.” Suppressive soils constitute a valuable source of biocontrol agents. Isolation of these microorganisms follows a “taxonomy-based” approach and their activities are typically tested in in vitro assays that do not mimic field conditions. Additionally, the re-introduction of these microorganisms in non-suppressive soils often lead to inconsistent protective activities, mostly driven by a lack of a sufficient root colonization and/or inhibition of their modes of action under field conditions. Relevant functions involved in disease suppressiveness can be executed by multiple microbial taxa, but metatranscriptome, metaproteome and metabolome studies of disease suppressive soils are still underrepresented. The combination of the “taxonomy-based” approaches with “trait-based” approaches would be preferred to unravel the complexity of the specific microorganisms and mechanisms underlying disease suppressiveness. Thus, rather than introducing beneficial microorganisms, agricultural research should focus on identifying the factors that influence key microorganisms or traits responsible for suppressiveness (Kinkel et al., 2014), meanwhile eliminating the practical and legislative difficulties of introducing microorganisms in the environment. Hence, research on management practices aiming to select or stimulate resident microbial communities or activities that enhance suppressiveness is emerging. Examples are the use of specific soil amendments including chitin (Cretoiu et al., 2013, 2014; Larkin, 2015; Postma and Schilder, 2015), chitosan (Ben-Shalom et al., 2003; Liu et al., 2012) or fish emulsion (Abbasi, 2013), the introduction of agricultural practices such as crop rotation or minimum tillage (Stirling et al., 2012; Schillinger and Paulitz, 2014; Duchene et al., 2017), or the use of cover crops (Ji et al., 2012), or by host-mediated microbiome engineering, where the protective microbiome is artificially selected over multiple generations (Mueller and Sachs, 2015).
Concluding Remarks
Crop losses due to plant pests and diseases are a common problem worldwide. Improving productivity is crucial to reduce rural poverty and to increase food security worldwide (Flood, 2010; Cerda et al., 2017). Therefore, managing and preserving soil health is essential for sustainable agriculture and optimum ecosystem functioning (Larkin, 2015). The use of pesticides is a traditional control strategy, but the development of pathogen resistance and an increasing public concern about the adverse effects on plant, animal and human health necessitate alternative and sustainable control methods. Engineering the soil and plant microbiome has been suggested as a novel and promising means for plant health (Mueller and Sachs, 2015). Moreover, Kinkel et al. (2011), Mazzola and Freilich (2016), and Raaijmakers and Mazzola (2016) further emphasized the need for analyzing the co-evolutionary processes leading to the assembly of a disease suppressive microbiome in soils. Understanding these processes will unravel “how” a soil becomes suppressive, allowing us to engineer the soil microbiome to jumpstart the onset of disease suppressiveness prior to pathogen invasion.
Statements
Author contributions
RGE drafted the manuscript. IdB, JP, and JR contributed to the revision of the manuscript.
Acknowledgments
This manuscript is publication number 6444 of Netherlands Institute of Ecology (NIOO-KNAW). This research was funded by the Dutch Technology Foundation (NWO-TTW), project number STW11755.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
1
Abbasi P. A. (2013). Establishing suppressive conditions against soilborne potato diseases with low rates of fish emulsion applied serially as a pre-plant soil amendment.Can. J. Plant Pathol.3510–19. 10.1080/07060661.2012.740076
2
Abdeljalil N. O.-B. Vallance J. Gerbore J. Rey P. Daami-Remadi M. (2016). Bio-suppression of Sclerotinia stem rot of tomato and biostimulation of plant growth using tomato-associated rhizobacteria.J. Plant Pathol. Microbiol.7:331. 10.4172/2157-7471.1000331
3
Adam M. Westphal A. Hallmann J. Heuer H. (2014). Specific microbial attachment to root knot nematodes in suppressive soil.Appl. Environ. Microbiol.802679–2686. 10.1128/AEM.03905-13
4
Alabouvette C. (1986). Fusarium-wilt suppressive soils from the Châteaurenard region: review of a 10-year study.Agronomie6273–284. 10.1051/agro:19860307
5
Alabouvette C. Olivain C. Migheli Q. Steinberg C. (2009). Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum.New Phytol.184529–544. 10.1111/j.1469-8137.2009.03014.x
6
Almario J. Kyselková M. Kopecký J. Ságová-Marečková M. Muller D. Grundmann G. L. et al (2013). Assessment of the relationship between geologic origin of soil, rhizobacterial community composition and soil receptivity to tobacco black root rot in Savoie region (France).Plant Soil371397–408. 10.1007/s11104-013-1677-1
7
Amir H. Alabouvette C. (1993). Involvement of soil abiotic factors in the mechanisms of soil suppressiveness to Fusarium wilts.Soil Biol. Biochem.25157–164. 10.1016/0038-0717(93)90022-4
8
Atkinson G. F. (1892). Some Diseases of Cotton,Vol. 41. Auburn, AL: Agricultural Experiment Station of the Agricultural and Mechanical College65
9
Baker K. Cook R. J. (1974). Biological Control of Plant Pathogens.New York, NY: WH Freeman and Company433.
10
Bell N. L. Adam K. H. Jones R. J. Johnson R. D. Mtandavari Y. F. Burch G. et al (2016). Detection of invertebrate suppressive soils, and identification of a possible biological control agent for Meloidogyne nematodes using high resolution rhizosphere microbial community analysis.Front. Plant Sci.7:1946. 10.3389/fpls.2016.01946
11
Ben-Shalom N. Ardi R. Pinto R. Aki C. Fallik E. (2003). Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan.Crop Prot.22285–290. 10.1016/S0261-2194(02)00149-7
12
Berendsen R. L. Pieterse C. M. Bakker P. A. (2012). The rhizosphere microbiome and plant health.Trends Plant Sci.17478–486. 10.1016/j.tplants.2012.04.001
13
Bonanomi G. Antignani V. Capodilupo M. Scala F. (2010). Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases.Soil Biol. Biochem.42136–144. 10.1016/j.soilbio.2009.10.012
14
Broadbent P. Baker K. F. (1974). Behaviour of Phytophthora cinnamomi in soils suppressive and conducive to root rot.Crop Pasture Sci.25121–137. 10.1071/AR9740121
15
Burke D. (1954). “Pathogenicity of Fusarium solani f phaseoli in different soils”, inPhytopathology,ed.SubbaraoK. V. (St Paul, MN: American Phytopathological Society) 483–483.
16
Cazorla F. Romero D. Pérez-García A. Lugtenberg B. J. Vicente A. D. Bloemberg G. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity.J. Appl. Microbiol.1031950–1959. 10.1111/j.1365-2672.2007.03433.x
17
Cerda R. Avelino J. Gary C. Tixier P. Lechevallier E. Allinne C. (2017). Primary and secondary yield losses caused by pests and diseases: assessment and modeling in coffee.PLOS ONE12:e0169133. 10.1371/journal.pone.0169133
18
Cha J.-Y. Han S. Hong H. J. Cho H. Kim D. Kwon Y. et al (2016). Microbial and biochemical basis of a Fusarium wilt-suppressive soil.ISME J.10119–129. 10.1038/ismej.2015.95
19
Chapelle E. Mendes R. Bakker P. A. Raaijmakers J. M. (2015). Fungal invasion of the rhizosphere microbiome.ISME J.10265–268. 10.1038/ismej.2015.82
20
Chern L. Ko W. (1989). Characteristics of inhibition of suppressive soil created by monoculture with radish in the presence of Rhizoctonia solani.J. Phytopathol.126237–245. 10.1111/j.1439-0434.1989.tb01110.x
21
Chet H. Baker R. (1981). Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani.Phytopathology71286–290. 10.1094/Phyto-71-286
22
Chet I. Harman G. E. Baker R. (1981). Trichoderma hamatum: its hyphal interactions with Rhizoctonia solani and Pythium spp.Microb. Ecol.729–38. 10.1007/BF02010476
23
Chng S. Cromey M. Dodd S. Stewart A. Butler R. C. Jaspers M. V. (2015). Take-all decline in New Zealand wheat soils and the microorganisms associated with the potential mechanisms of disease suppression.Plant Soil397239–259. 10.1007/s11104-015-2620-4
24
Cordovez V. Carrion V. J. Etalo D. W. Mumm R. Zhu H. van Wezel G. P. et al (2015). Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil.Front. Microbiol.6:1081. 10.3389/fmicb.2015.01081
25
Couteaudier Y. Alabouvette C. (1990). Quantitative comparison of Fusarium oxysporum competitiveness in relation to carbon utilization.FEMS Microbiol. Lett.74261–267. 10.1111/j.1574-6968.1990.tb04072.x
26
Cretoiu M. S. Berini F. Kielak A. M. Marinelli F. van Elsas J. D. (2015). A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil.Appl. Microbiol. Biotechnol.998199–8215. 10.1007/s00253-015-6639-5
27
Cretoiu M. S. Kielak A. M. Schlüter A. van Elsas J. D. (2014). Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing.Soil Biol. Biochem.765–11. 10.1016/j.soilbio.2014.04.027
28
Cretoiu M. S. Korthals G. W. Visser J. H. van Elsas J. D. (2013). Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field.Appl. Environ. Microbiol.795291–5301. 10.1128/AEM.01361-13
29
De Boer W. Klein Gunnewiek P. J. Kowalchuk G. A. Van Veen J. A. (2001). Growth of chitinolytic dune soil β-subclass Proteobacteria in response to invading fungal hyphae.Appl. Environ. Microbiol.673358–3362. 10.1128/AEM.67.8.3358-3362.2001
30
De Souza J. T. Weller D. M. Raaijmakers J. M. (2003). Frequency, diversity, and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils.Phytopathology9354–63. 10.1094/PHYTO.2003.93.1.54
31
Donn S. Almario J. Mullerc D. Moenne-Loccoz Y. Gupta V. V. S. R. Kirkegaard J. A. et al (2014). Rhizosphere microbial communities associated with Rhizoctonia damage at the field and disease patch scale.Appl. Soil Ecol.7837–47. 10.1016/j.apsoil.2014.02.001
32
Duchene O. Vian J.-F. Celette F. (2017). Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review.Agric. Ecosyst. Environ.240148–161. 10.1016/j.agee.2017.02.019
33
Dunne C. Crowley J. J. Moenne-Loccoz Y. Dowling D. N. De Bruijn F. J. O’Gara F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity.Microbiology1433921–3931. 10.1099/00221287-143-12-3921
34
Eberlein C. Heuer H. Vidal S. Westphal A. (2016). Microbial communities in Globodera pallida females raised in potato monoculture soil.Phytopathology106581–590. 10.1094/PHYTO-07-15-0180-R
35
Flood J. (2010). The importance of plant health to food security.Food Sec.2215–231. 10.1007/s12571-010-0072-5
36
Fradkin A. Patrick Z. (1985). Effect of matric potential, pH, temperature, and clay minerals on bacterial colonization of conidia of Cochliobolus sativus and on their survival in soil.Can. J. Plant Pathol.719–27. 10.1080/07060668509501509
37
Garbeva P. Postma J. van Veen J. A. van Elsas J. D. (2006). Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3.Environ. Microbiol.8233–246. 10.1111/j.1462-2920.2005.00888.x
38
Garbeva P. van Veen J. A. van Elsas J. D. (2004). Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness.Annu. Rev. Phytopathol.42243–270. 10.1146/annurev.phyto.42.012604.135455
39
Gerlagh M. Goossen-van de Geijn H. M. Fokkema N. J. Vereijken P. F. (1999). Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops.Phytopathology89141–147. 10.1094/PHYTO.1999.89.2.141
40
Giné A. Carrasquilla M. Martínez-Alonso M. Gaju N. Sorribas F. J. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse.Front. Plant Sci.7:164. 10.3389/fpls.2016.00164
41
Großkopf T. Soyer O. S. (2014). Synthetic microbial communities.Curr. Opin. Microbiol.1872–77. 10.1016/j.mib.2014.02.002
42
Haas D. Defago G. (2005). Biological control of soil-borne pathogens by fluorescent Pseudomonads.Nat. Rev. Microbiol.3307–319. 10.1038/nrmicro1129
43
Hadar Y. Harman G. E. Taylor A. G. (1984). Evaluation of Trichoderma koningii and T. harzianum from New York soils for biological control of seed rot caused by Pythium spp.Phytopathology74106–110. 10.1094/Phyto-74-106
44
Haggag W. Timmusk S. (2008). Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease.J. Appl. Microbiol.104961–969. 10.1111/j.1365-2672.2007.03611.x
45
Harman G. Chet I. Baker R. (1980). Trichoderma hamatum effects on seed and seedling disease induced in radish and pea by Pythium spp. or Rhizoctonia solani.Phytopathology701167–1171. 10.1094/Phyto-70-1167
46
Henry A. (1931a). Occurrence and sporulation of Helminthosporium sativum PKB in the soil.Can. J. Res.5407–413. 10.1139/cjr31-078
47
Henry A. (1931b). The natural microflora of the soil in relation to the foot-rot problem of wheat.Can. J. Res.469–77. 10.1139/cjr31-006
48
Hjort K. Lembke A. Speksnijder A. Smalla K. Jansson J. K. (2007). Community structure of actively growing bacterial populations in plant pathogen suppressive soil.Microb. Ecol.53399–413. 10.1007/s00248-006-9120-2
49
Hjort K. Presti I. Elväng A. Marinelli F. Sjöling S. (2014). Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics.Appl. Microbiol. Biotechnol.982819–2828. 10.1007/s00253-013-5287-x
50
Hol W. Garbeva P. Hordijk C. Hundscheid M. P. J. Klein Gunnewiek P. J. A. van Agtmaal M. et al (2015). Non-random species loss in bacterial communities reduces antifungal volatile production.Ecology962042–2048. 10.1890/14-2359.1
51
Howell C. Beier R. C. Stipanovic R. D. (1988). Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium preemergence damping-off by the bacterium.Phytopathology781075–1078. 10.1094/Phyto-78-1075
52
Huang X. Liu J. Ding J. He Q. Xiong R. Zhang K. (2009). The investigation of nematocidal activity in Stenotrophomonas maltophilia G2 and characterization of a novel virulence serine protease.Can. J. Microbiol.55934–942. 10.1139/w09-045
53
Jager G. Velvis H. (1983). Suppression of Rhizoctonia solani in potato fields. II. Effect of origin and degree of infection with Rhizoctonia solani of seed potatoes on subsequent infestation and on formation of sclerotia.Eur. J. Plant Pathol.89141–152. 10.1016/j.syapm.2012.11.007
54
Jambhulkar P. P. Sharma M. Lakshman D. Sharma P. (2015). “Natural mechanisms of soil suppressiveness against diseases caused by Fusarium, Rhizoctonia, Pythium, and Phytophthora,” inOrganic Amendments and Soil Suppressiveness in Plant Disease ManagementedsMeghvansiM. K.VarmaA. (Berlin: Springer) 95–123.
55
Ji P. Koné D. Yin J. Jackson K. L. Csinos A. S. (2012). Soil amendments with Brassica cover crops for management of Phytophthora blight on squash.Pest Manag. Sci.68639–644. 10.1002/ps.2308
56
Junaid J. M. Dar N. A. Bhat T. A. Bhat A. H. Bhat M. A. (2013). Commercial biocontrol agents and their mechanism of action in the management of plant pathogens.Int. J. Mod. Plant Anim. Sci.139–57. 10.3109/07388551.2010.487258
57
Keinath A. P. Fravel D. R. (1992). Induction of soil suppressiveness to Verticillium wilt of potato by successive croppings.Am. Potato J.69503–513. 10.1007/BF02853839
58
Kinkel L. L. Bakker M. G. Schlatter D. C. (2011). A coevolutionary framework for managing disease-suppressive soils.Annu. Rev. Phytopathol.4947–67. 10.1146/annurev-phyto-072910-095232
59
Kinkel L. L. Schlatter D. C. Bakker M. G. Arenz B. E. (2012). Streptomyces competition and co-evolution in relation to plant disease suppression.Res. Microbiol.163490–499. 10.1016/j.resmic.2012.07.005
60
Kinkel L. L. Schlatter D. C. Xiao K. Baines A. D. (2014). Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes.ISME J.8249–256. 10.1038/ismej.2013.175
61
Klein E. Ofek M. Katan J. Minz D. Gamliel A. (2013). Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.Phytopathology10323–33. 10.1094/phyto-12-11-0349
62
Kloepper J. W. Leong J. Teintze M. Schroth M. N. (1980). Pseudomonas siderophores: a mechanism explaining disease-suppressive soils.Curr. Microbiol.4317–320. 10.1007/bf02602840
63
Kluepfel D. McInnis T. M. Zehr E. I. (1993). Involvement of root-colonizing bacteria in peach orchard soils suppressive of the nematode Criconemella xenoplax.Phytopathology831240–1240. 10.1094/Phyto-83-1240
64
Ko W. Hora F. K. Herlicska E. (1974). Isolation and identification of a volatile fungistatic substance from alkaline soil [Ammonia].Phytopathology641042–1043. 10.1094/Phyto-64-1042
65
Kobayashi N. Komada H. (1995). Screening of suppressive soils to Fusarium wilt from Kanto, Tozan and Tokai areas in Japan, and analysis of their suppressiveness.Soil Microorg.4521–32.
66
Kyselková M. Almario J. Kopecký J. Ságová-Marečková M. Haurat J. Muller D. et al (2014). Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers’ fields.Environ. Microbiol. Rep.6346–353. 10.1111/1758-2229.12131
67
Kyselková M. Kopecký J. Frapolli M. Défago G. Ságová-Marecková M. Grundmann G. L. et al (2009). Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease.ISME J.31127–1138. 10.1038/ismej.2009.61
68
Lapsansky E. R. Milroy A. M. Andales M. J. Vivanco J. M. (2016). Soil memory as a potential mechanism for encouraging sustainable plant health and productivity.Curr. Opin. Biotechnol.38137–142. 10.1016/j.copbio.2016.01.014
69
Larkin R. P. (2015). Soil health paradigms and implications for disease management.Annu. Rev. Phytopathol.53199–221. 10.1146/annurev-phyto-080614-120357
70
Larkin R. P. Fravel D. R. (2002). Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp.Phytopathology921160–1166. 10.1094/PHYTO.2002.92.11.1160
71
Larkin R. P. Hopkins D. L. Martin F. N. (1996). Suppression of Fusarium wilt of watermelon by non-pathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil.Phytopathology86812–819. 10.1094/Phyto-86-812
72
Latz E. Eisenhauer N. Rall B. C. Allan E. Roscher C. Scheu S. et al (2012). Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities.J. Ecol.100597–604. 10.1111/j.1365-2745.2011.01940.x
73
Laville J. Voisard C. Keel C. Maurhofer G. Défago G. Haas D. (1992). Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco.Proc. Natl. Acad. Sci. U.S.A.891562–1566. 10.1073/pnas.89.5.1562
74
Lebeis S. L. Paredes S. H. Lundberg D. S. Breakfield N. Gehring J. McDonald M. et al (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.Science349860–864. 10.1126/science.aaa8764
75
Lemanceau P. Alabouvette C. (1991). Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium.Crop Prot.10279–286. 10.1016/0261-2194(91)90006-D
76
Lemanceau P. Alabouvette C. Couteaudier Y. (1988). Recherches sur la résistance des sols aux maladies. XIV. Modification du niveau de réceptivité d’un sol résistant et d’un sol sensible aux fusarioses vasculaires en réponse à des apports de fer ou de glucose.Agronomie8155–162. 10.1051/agro:19880209
77
Lemanceau P. Maurhofer M. Défago G. (2006). “Contribution of studies on suppressive soils to the identification of bacterial biocontrol agents and to the knowledge of their modes of action,” inPlant-Associated Bacteriaed.GnanamanickamS. (Dordrecht: Springer) 231–267.
78
Li G. Q. Huang H. C. Miao H. J. Erickson R. S. Jiang D. H. Xiao Y. N. (2006). Biological control of Sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans.Eur. J. Plant Pathol.114345–355. 10.1007/s10658-005-2232-6
79
Li X. Zhang Y. Ding C. Jia Z. He Z. Zhang T. et al (2015). Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness.Biol. Fertil. Soils51935–946. 10.1007/s00374-015-1038-8
80
Liu D. Anderson N. A. Kinkel L. L. (1996). Selection and characterization of strains of Streptomyces suppressive to the potato scab pathogen.Can. J. Microbiol.42487–502. 10.1139/m96-066
81
Liu H. Tian W. Li B. Wu G. Ibrahim M. Tao Z. et al (2012). Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen.Rhizoctonia solani. Biotechnol. Lett.342291–2298. 10.1007/s10529-012-1035-z
82
Liu S.-D. Baker R. (1980). Mechanism of biological control in soil suppressive to Rhizoctonia solani.Phytopathology70404–412. 10.1094/Phyto-70-404
83
Madi L. Katan J. (1998). Penicillium janczewskii and its metabolites, applied to leaves, elicit systemic acquired resistance to stem rot caused by Rhizoctonia solani.Physiol. Mol. Plant Pathol.53163–175. 10.1006/pmpp.1998.0174
84
Martin F. Hancock J. (1986). Association of chemical and biological factors in soils suppressive to Pythium ultimum.Phytopathology761221–1231. 10.1094/Phyto-76-1221
85
Mazurier S. Corberand T. Lemanceau P. Raaijmakers J. M. (2009). Phenazine antibiotics produced by fluorescent Pseudomonads contribute to natural soil suppressiveness to Fusarium wilt.ISME J.3977–991. 10.1038/ismej.2009.33
86
Mazzola M. (2002). Mechanisms of natural soil suppressiveness to soilborne diseases.Antonie Van Leeuwenhoek81557–564. 10.1023/A:1020557523557
87
Mazzola M. Freilich S. (2016). Prospects for biological soil-borne disease control: application of indigenous versus synthetic microbiomes.Phytopathology107256–263. 10.1094/PHYTO-09-16-0330-RVW
88
Mendes R. Garbeva P. Raaijmakers J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.FEMS Microbiol. Rev.37634–663. 10.1111/1574-6976.12028
89
Mendes R. Kruijt M. de Bruijn I. Dekkers E. van der Voort M. Schneider J. H. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria.Science3321097–1100. 10.1126/science.1203980
90
Meng Q. Yin J. F. Rosenzweig N. Douches D. Hao J. J. (2012). Culture-based assessment of microbial communities in soil suppressive to potato common scab.Plant Dis.96712–717. 10.1094/PDIS-05-11-0441
91
Menzies J. (1959). Occurrence and transfer of a biological factor in soil that suppresses potato scab.Phytopathology49648–652.
92
Mghalu M. J. Tsuji T. Kubo N. Kubota M. Hyakumachi M. (2007). Selective accumulation of Trichoderma species in soils suppressive to radish damping-off disease after repeated inoculations with Rhizoctonia solani, binucleate Rhizoctonia and Sclerotium rolfsii.J. Gen. Plant Pathol.73:250. 10.1007/s10327-007-0016-x
93
Michelsen C. F. Stougaard P. (2011). A novel antifungal Pseudomonas fluorescens isolated from potato soils in Greenland.Curr. Microbiol.621185–1192. 10.1007/s00284-010-9846-4
94
Michelsen C. F. Watrous J. Glaring M. A. Kersten R. Koyama N. Dorrestein P. C. et al (2015). Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil.mBio6:e00079-15. 10.1128/mBio.00079-15
95
Minerdi D. Bossi S. Gullino M. L. Garibaldi A. (2009). Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35.Environ. Microbiol.11844–854. 10.1111/j.1462-2920.2008.01805.x
96
Mueller U. G. Sachs J. L. (2015). Engineering microbiomes to improve plant and animal health.Trends Microbiol.23606–617. 10.1016/j.tim.2015.07.009
97
Neeno-Eckwall E. C. Kinkel L. L. Schottel J. L. (2001). Competition and antibiosis in the biological control of potato scab.Can. J. Microbiol.47332–340. 10.1139/w01-010
98
Nel B. Steinberg C. Labuschagne N. Viljoen A. (2006). The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana.Plant Pathol.55217–223. 10.1111/j.1365-3059.2006.01344.x
99
New P. Kerr A. (1972). Biological control of crown gall: field measurements and glasshouse experiments.J. Appl. Microbiol.35279–287. 10.1111/j.1365-2672.1972.tb03699.x
100
Ofek M. Voronov-Goldman M. Hadar Y. Minz D. (2014). Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities.Environ. Microbiol.162157–2167. 10.1111/1462-2920.12228
101
Ofek-Lalzar M. Sela N. Goldman-Voronov M. Green S. J. Hadar Y. Minz D. (2014). Niche and host-associated functional signatures of the root surface microbiome.Nat. Commun.5:4950. 10.1038/ncomms5950
102
Olatinwo R. Yin B. Becker J. O. Borneman J. (2006). Suppression of the plant-parasitic nematode Heterodera schachtii by the fungus Dactylella oviparasitica.Phytopathology96111–114. 10.1094/PHYTO-96-0111
103
Partridge D. Sutton T. B. Jordan D. L. Curtis V. L. (2006). Management of Sclerotinia blight of peanut with the biological control agent Coniothyrium minitans.Plant Dis.90957–963. 10.1094/PD-90-0957
104
Penton C. R. Gupta V. V. Tiedje J. M. Neate S. M. Ophel-Keller K. Gillings M. et al (2014). Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing.PLOS ONE9:e93893. 10.1371/journal.pone.0093893
105
Perneel M. Heyrman J. Adiobo A. De Maeyer K. Raaijmakers J. M. De Vos P. (2007). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity.J. Appl. Microbiol.1031007–1020. 10.1111/j.1365-2672.2007.03345.x
106
Persson L. Olsson S. (2000). Abiotic characteristics of soils suppressive to Aphanomyces root rot.Soil Biol. Biochem.321141–1150. 10.1016/S0038-0717(00)00030-4
107
Postma J. Scheper R. W. A. Schilder M. T. (2010). Effect of successive cauliflower plantings and Rhizoctonia solani AG 2-1 inoculations on disease suppressiveness of a suppressive and a conducive soil.Soil Biol. Biochem.42804–812. 10.1016/j.soilbio.2010.01.017
108
Postma J. Schilder M. T. (2015). Enhancement of soil suppressiveness against Rhizoctonia solani in sugar beet by organic amendments.Appl. Soil Ecol.9472–79. 10.1016/j.apsoil.2015.05.002
109
Poudel R. Jumpponen A. Schlatter D. C. Paulitz T. C. Gardener B. B. Kinkel L. L. et al (2016). Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management.Phytopathology1061083–1096. 10.1094/PHYTO-02-16-0058-FI
110
Pyrowolakis A. Westphal A. Sikora R. A. Beckerb J. O. (2002). Identification of root-knot nematode suppressive soils.Appl. Soil Ecol.1951–56. 10.1016/S0929-1393(01)00170-6
111
Raaijmakers J. M. Mazzola M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria.Annu. Rev. Phytopathol.50403–424. 10.1146/annurev-phyto-081211-172908
112
Raaijmakers J. M. Mazzola M. (2016). Soil immune responses.Science3521392–1393. 10.1126/science.aaf3252
113
Raaijmakers J. M. Paulitz T. C. Steinberg C. Alabouvette C. Moënne-Loccoz Y. (2009). The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms.Plant Soil321341–361. 10.1007/s11104-008-9568-6
114
Raaijmakers J. M. Weller D. M. (1998). Natural plant protection by 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils.Mol. Plant Microbe Interact.11144–152. 10.1094/MPMI.1998.11.2.144
115
Radajewski S. Ineson P. Parekh N. R. Murrell J. C. (2000). Stable-isotope probing as a tool in microbial ecology.Nature403646–649. 10.1038/35001054
116
Rey P. Le Floch G. Benhamou N. Salerno M. I. Thuillier E. Tirilly Y. (2005). Interactions between the mycoparasite Pythium oligandrum and two types of sclerotia of plant-pathogenic fungi.Mycol. Res.109779–788. 10.1017/S0953756205003059
117
Rodríguez M. A. Rothen C. Lo T. E. Cabrera G. M. Godeas A. M. (2015). Suppressive soil against Sclerotinia sclerotiorum as a source of potential biocontrol agents: selection and evaluation of Clonostachys rosea BAFC1646.Biocontrol Sci. Technol.251388–1409. 10.1080/09583157.2015.1052372
118
Rosenzweig N. Tiedje J. M. Quensen J. F. Meng Q. Hao J. J. (2012). Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses.Plant Dis.96718–725. 10.1094/PDIS-07-11-0571
119
Sanguin H. Sarniguet A. Gazengel K. Moënne-Loccoz Y. Grundmann G. L. (2009). Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture.New Phytol.184694–707. 10.1111/j.1469-8137.2009.03010.x
120
Scher F. M. Baker R. (1980). Mechanism of biological control in a Fusarium-suppressive soil.Phytopathology70412–417. 10.1094/Phyto-70-412
121
Scher F. M. Baker R. (1982). Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens.Phytopathology721567–1573. 10.1094/Phyto-72-1567
122
Schillinger W. F. Paulitz T. (2014). Natural suppression of Rhizoctonia bare patch in a long-term no-till cropping systems experiment.Plant Dis.98389–394. 10.1094/PDIS-04-13-0420-RE
123
Schisler D. Slininger P. (1994). Selection and performance of bacterial strains for biologically controlling Fusarium dry rot of potatoes incited by Gibberella pulicaris.Plant Dis.78251–255. 10.1094/PD-78-0251
124
Schreiner K. Hagn A. Kyselková M. Moënne-Loccoz Y. Welzl G. Munch J. C. et al (2010). Comparison of barley succession and take-all disease as environmental factors shaping the rhizobacterial community during take-all decline.Appl. Environ. Microbiol.764703–4712. 10.1128/AEM.00481-10
125
Shen Z. Ruan Y. Chao X. Zhang J. Li R. Shen Q. (2015). Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression.Biol. Fertil. Soils51553–562. 10.1007/s00374-015-1002-7
126
Shiomi Y. Nishiyama M. Onizuka T. Marumoto T. (1999). Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt.Appl. Environ. Microbiol.653996–4001.
127
Siddiqui S. Siddiqui Z. A. Ahmad I. (2005). Evaluation of fluorescent Pseudomonads and Bacillus isolates for the biocontrol of a wilt disease complex of pigeonpea.World J. Microbiol. Biotechnol.21729–732. 10.1007/s11274-004-4799-z
128
Siddiqui Z. (2007). Biocontrol of Alternaria triticina by plant growth promoting rhizobacteria on wheat.Arch. Phytopathol. Plant Prot.40301–308. 10.1080/03235400600587391
129
Smith V. L. Wilcox W. F. Harman G. E. (1990). Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp.Phytopathology80880–885. 10.1094/Phyto-80-880
130
Sneh B. Dupler M. Elad Y. Basker R. (1984). Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from a Fusarium-suppressive soil.Phytopathology741115–1124. 10.1094/Phyto-74-1115
131
Sneh B. Pozniak D. Salomon D. (1987). Soil suppressiveness to Fusarium wilt of melon, induced by repeated croppings of resistant varieties of melons.J. Phytopathol.120347–354. 10.1111/j.1439-0434.1987.tb00498.x
132
Song J. Li S. Xu Y. Wei W. Yao Q. Panet F. (2016). Diversity of parasitic fungi from soybean cyst nematode associated with long-term continuous cropping of soybean in black soil.Acta Agric. Scand. B Soil Plant Sci.66432–442.
133
Stirling G. Smith M. K. Smith J. P. Stirling A. M. Hamill S. D. (2012). Organic inputs, tillage and rotation practices influence soil health and suppressiveness to soilborne pests and pathogens of ginger.Australas. Plant Pathol.4199–112. 10.1007/s13313-011-0096-0
134
Thomashow L. Pierson L. (1991). “Genetic aspects of phenazine antibiotic production by fluorescent Pseudomonads that suppress take-all disease of wheat,” inAdvances in Molecular Genetics of Plant-Microbe InteractionsVol. 1edsDanielsM. J.Allan DownieJ.OsbournA. E. (Dordrecht: Springer) 443–449.
135
Tkacz A. Cheema J. Chandra G. Grant A. Poole P. S. (2015). Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition.ISME J.92349–2359. 10.1038/ismej.2015.41
136
Tomihama T. Nishi Y. Mori K. Shirao T. Iida T. Uzuhashi S. et al (2016). Rice bran amendment suppresses potato common scab by increasing antagonistic bacterial community levels in the rhizosphere.Phytopathology106719–728. 10.1094/PHYTO-12-15-0322-R
137
Toyota K. Kimura M. (1993). Colonization of chlamydospores of Fusarium oxysporum f. sp. raphani by soil bacteria and their effects on germination.Soil Biol. Biochem.25193–197. 10.1016/0038-0717(93)90026-8
138
Trivedi P. Delgado-Baquerizobc M. Trivedi C. Hamonts K. Anderson I. C. Singh B. K. et al (2017). Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems.Soil Biol. Biochem.11110–14. 10.1016/j.soilbio.2017.03.013
139
van der Voort M. Kempenaar M. van Driel M. Raaijmakers J. M. Mendes R. (2016). Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression.Ecol. Lett.19375–382. 10.1111/ele.12567
140
van den Boogert P. H. Reinartz H. Sjollema K. A. Veenhuis M. (1989). Microscopic observations on the interaction of the mycoparasite Verticillium biguttatum with Rhizoctonia solani and other soil-borne fungi.Antonie Van Leeuwenhoek56161–174. 10.1007/BF00399979
141
Van Elsas J. D. Costa R. Jansson J. Sjöling S. Bailey M. Nalin R. et al (2008). The metagenomics of disease-suppressive soils–experiences from the METACONTROL project.Trends Biotechnol.26591–601. 10.1016/j.tibtech.2008.07.004
142
Velvis H. Jager G. (1983). Biological control of Rhizoctonia solani on potatoes by antagonists. 1. Preliminary experiments with Verticillium biguttatum, a sclerotium-inhabiting fungus.Eur. J. Plant Pathol.89113–123. 10.1007/BF01976350
143
Vitullo D. Altieri R. Esposito A. Nigro F. Ferrara M. Alfano G. et al (2013). Suppressive biomasses and antagonist bacteria for an eco-compatible control of Verticillium dahliae on nursery-grown olive plants.Int. J. Environ. Sci. Technol.10209–220. 10.1007/s13762-012-0145-4
144
Voisard C. Keel C. Haas D. Dèfago G. (1989). Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions.EMBO J.8351–358.
145
Watrous J. Roach P. Alexandrov T. Heath B. S. Yang J. Y. Kersten R. D. et al (2012). Mass spectral molecular networking of living microbial colonies.Proc. Natl. Acad. Sci. U.S.A.109E1743–E1752. 10.1073/pnas.1203689109
146
Weinhold A. R. Oswald J. W. Bowman T. Bishop J. Wrightet D. (1964). Influence of green manures and crop rotation on common scab of potato.Am. Potato J.41265–273. 10.1007/bf02854863
147
Weller D. M. Raaijmakers J. M. Gardener B. B. Thomashow L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens.Annu. Rev. Phytopathol.40309–348. 10.1146/annurev.phyto.40.030402.110010
148
Whipps J. Sreenivasaprasad S. Muthumeenakshi S. Rogers C. W. Challen M. P. (2008). Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism.Eur. J. Plant Pathol.121323–330. 10.1007/s10658-007-9238-1
149
Wijetunga C. Baker R. (1979). Modeling of phenomena associated with soil suppressive to Rhizoctonia solani.Phytopathology691287–1293. 10.1094/Phyto-69-1287
150
Wiseman B. M. Neate S. M. Ophel Keller K. Smith S. E. (1996). Suppression of Rhizoctonia solani anastomosis group 8 in Australia and its biological nature.Soil Biol. Biochem.28727–732. 10.1016/0038-0717(95)00178-6
151
Wong P. Baker R. (1984). Suppression of wheat take-all and Ophiobolus patch by fluorescent Pseudomonads from a Fusarium-suppressive soil.Soil Biol. Biochem.16397–403. 10.1016/0038-0717(84)90040-3
152
Workneh F. Van Bruggen A. (1994). Microbial density, composition, and diversity in organically and conventionally managed rhizosphere soil in relation to suppression of corky root of tomatoes.Appl. Soil Ecol.1219–230. 10.1016/0929-1393(94)90013-2
153
Xiong W. Rong L. Ren Y. Shen Q. (2017). Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease.Soil Biol. Biochem.107198–207. 10.1016/j.soilbio.2017.01.010
154
Xiong W. Zhao Q. Zhao J. Xun W. Li R. Zhang R. et al (2015). Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.Microb. Ecol.70209–218. 10.1007/s00248-014-0516-0
155
Xue C. Ryan Penton C. Shen Z. Zhang R. Huang Q. Li R. et al (2015). Manipulating the banana rhizosphere microbiome for biological control of Panama disease.Sci. Rep.5:11124. 10.1038/srep11124
156
Yang J. I. Loffredo A. Borneman J. Becker J. O. (2012). Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from a root-knot nematode suppressive soil.J. Nematol.4467–71.
157
Yin C. Hulbert S. H. Schroeder K. L. Mavrodi O. Mavrodi D. Dhingra A. et al (2013). Role of bacterial communities in the natural suppression of Rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.).Appl. Environ. Microbiol.797428–7438. 10.1128/AEM.01610-13
158
Yuen G. Schroth M. (1986). Inhibition of Fusarium oxysporum f. sp. dianthi by iron competition with an Alcaligenes sp.Phytopathology76171–176. 10.1094/Phyto-76-171
159
Zhang M. Li J. Shen A. Tan S. Yan Z. Yu Y. et al (2016). Isolation and Identification of Bacillus amyloliquefaciens IBFCBF-1 with potential for biological control of Phytophthora blight and growth promotion of pepper.J. Phytopathol.1641012–1021. 10.1111/jph.12522
Summary
Keywords
disease suppressive soil, omics technologies, rhizosphere microbiome, antagonism by rhizobacteria, pathogen suppression
Citation
Gómez Expósito R, de Bruijn I, Postma J and Raaijmakers JM (2017) Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils. Front. Microbiol. 8:2529. doi: 10.3389/fmicb.2017.02529
Received
27 August 2017
Accepted
05 December 2017
Published
18 December 2017
Volume
8 - 2017
Edited by
Jan Dirk Van Elsas, University of Groningen, Netherlands
Reviewed by
Fernando Dini Andreote, University of São Paulo, Brazil; Brajesh Singh, Western Sydney University, Australia
Updates
Copyright
© 2017 Gómez Expósito, de Bruijn, Postma and Raaijmakers.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Jos M. Raaijmakers, j.raaijmakers@nioo.knaw.nl
This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Microbiology
Disclaimer
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.