Impact Factor 4.019
2017 JCR, Clarivate Analytics 2018

The world's most-cited Microbiology journal

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Microbiol. | doi: 10.3389/fmicb.2018.03271

The NADPH oxidases Nox1 and Nox2 differentially regulate volatile organic compounds, fungistatic activity, plant growth promotion and nutrient assimilation in Trichoderma atroviride

 Artemio Mendoza-Mendoza1*, Leandro Lopes Loguercio2*,  Valter Cruz-Magalhães2, Maria F. Nieto-Jacobo1,  Michael Rostás1, Eline van Zijll de Jong1, Fabiola Padilla-Arizmendi1, Diwakar Kandula1, Janaki Kandula1, John Hampton1, Alison Stewart3, johanna M. Steyaert4 and  Alfredo Herrera-Estrella5
  • 1Lincoln University, New Zealand
  • 2Universidade Estadual de Santa Cruz, Brazil
  • 3Foundation For Arable Research, New Zealand
  • 4Lincoln Agritech Ltd, New Zealand
  • 5Unidad Irapuato (CINVESTAV), Mexico

In eukaryotic systems, membrane-bound NADPH oxidases (Nox) generate reactive oxygen species (ROS) as a part of normal physiological functions. In the soil-borne mycoparasitic and plant facultative symbiont Trichoderma atroviride, Nox1 and the regulator NoxR are involved in differentiation induced by mechanical damage, while the role of Nox2 has not been determined. The knock-out strains ∆nox1, ∆noxR and ∆nox2 were compared to the parental strain (WT) in their ability to grow and conidiate under a series of stress conditions (osmotic, oxidative, membrane and cell-wall stresses). All three genes were differentially involved in the stress-response phenotypes. In addition, several interactive experiments with biotic factors (plant seedlings and other fungi) were performed comparing the mutant phenotypes with the WT, which was used as the reference strain. ∆nox1 and ∆noxR significantly reduced the antagonistic activity of T. atroviride against Rhizoctonia solani and Sclerotinia sclerotiorum in direct confrontation assays, but Δnox2 showed similar activity to the WT. The ∆nox1, ∆noxR and ∆nox2 mutants showed quantitative differences in the emission of several volatile organic compounds (VOCs). The effects of a blend of these volatiles on plant-growth promotion of Arabidopsis thaliana seedlings were determined in closed-chamber experiments. The increase in root and shoot biomass induced by T. atroviride VOCs was significantly lowered by ∆noxR and ∆nox1, but not by ∆nox2. In terms of fungistatic activity at a distance, ∆nox2 had a significant reduction in this trait against R. solani and S. sclerotiorum, while fungistasis was highly increased by ∆noxR and ∆nox1. Identification and quantification of individual VOCs in the blends emitted by the strains was performed by GC-MS and the patterns of variation observed for individual volatiles, such as 6-Pentyl-2H-pyran-2-one (6PP-1) and (E)-6-Pent-1-enylpyran-2-one (6PP-2) were consistent with their negative effects in plant-growth promotion and positive effects in fungistasis at a distance. Nox1 and NoxR appear to have a ubiquitous regulatory role of in a variety of developmental and interactive processes in T. atroviride either as positive or negative modulators. Nox2 may also have a role in regulating production of VOCs with fungistatic activity.

Keywords: Trichoderma, Volatile organic compounds (BVOC), reactive oxygen species, NADPH Oxidase, plant growth promotion, Fungistasis, biocontrol, Secondary metabolites (SM)

Received: 16 Sep 2018; Accepted: 17 Dec 2018.

Edited by:

Raffaella Balestrini, Institute for Sustainable Plant Protection, Italian National Research Council(IPSP-CNR), Italy

Reviewed by:

Michelina Ruocco, Institute for Sustainable Plant Protection, Italian National Research Council(IPSP-CNR), Italy
László Kredics, University of Szeged, Hungary  

Copyright: © 2018 Mendoza-Mendoza, Lopes Loguercio, Cruz-Magalhães, Nieto-Jacobo, Rostás, van Zijll de Jong, Padilla-Arizmendi, Kandula, Kandula, Hampton, Stewart, Steyaert and Herrera-Estrella. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence:
Dr. Artemio Mendoza-Mendoza, Lincoln University, Lincoln, New Zealand, artemio.mendoza@lincoln.ac.nz
Dr. Leandro Lopes Loguercio, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, Bahia, Brazil, leandro@uesc.br