Impact Factor 4.259 | CiteScore 4.30
More on impact ›

Correction ARTICLE

Front. Microbiol., 13 August 2019 | https://doi.org/10.3389/fmicb.2019.01785

Corrigendum: Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context

Nancy Merino1,2,3, Heidi S. Aronson4, Diana P. Bojanova1, Jayme Feyhl-Buska1, Michael L. Wong5,6, Shu Zhang7 and Donato Giovannelli2,8,9,10*
  • 1Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
  • 2Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
  • 3Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
  • 4Department of Biology, University of Southern California, Los Angeles, CA, United States
  • 5Department of Astronomy – Astrobiology Program, University of Washington, Seattle, WA, United States
  • 6NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
  • 7Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
  • 8Department of Biology, University of Naples “Federico II”, Naples, Italy
  • 9Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
  • 10Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy

A Corrigendum on
Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context

by Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L., Zhang, S., et al. (2019) Front. Microbiol. 10:780. doi: 10.3389/fmicb.2019.00780

In the original article, there was a mistake in the legend for Table 4 as published. The legend in Table 4 is missing two parentheses around “Poly.” The correct legend appears below.

Table 4. Examples of notable (Poly)extremophiles and their physiological requirements.”

Additionally, there was a mistake in Table 3 and Table 5 as published. In Table 3, the lowest temperature listed for Planococcus halocryophilus Or1 is “−18°C.” It should be “−15°C” instead. In addition, the pH range is “nr” but should be “6–11” instead. In the temperature column, 37 is bold type, but this should be regular type.

TABLE 3
www.frontiersin.org

Table 3. Limits of life as identified by (poly)extremophilic organisms in pure cultures.

TABLE 5
www.frontiersin.org

Table 5. Boundary conditions for different planetary bodies of astrobiological interest (compared to Earth), split into atmosphere, surface, and subsurface layers.

In Table 5, the atmosphere entry for Earth > Atmosphere > Geochemistry is listed as “8.1% N2,” but the actual composition of Earth's atmosphere is “78% N2.

The corrected Table 3 and Table 5 appear below.

Lastly, there is a grammatical error in the original article.

A correction has therefore been made to the section Can Life Originate, Evolve, or Survive on Other Planetary Bodies?, paragraph five:

“Solar and galactic cosmic rays (high-energy particles with energies from 10 MeV to >10 GeV) present challenges to life on the surface and near-surface of Mars and other planetary bodies. However, any subsurface aquifer deeper than a few meters would be protected from damaging radiation. Dartnell et al. (2007) calculated the galactic cosmic ray dosage rates and the corresponding survival times (which they defined as a million-fold decrease in cell number) of characteristic microbes at different depths in Mars's subsurface. At the surface, E. coli has a survival time of 1,200 years, while at 20-m depth, that survival time jumps to 1.5 × 108 years. Compared to E. coli, D. radiodurans has survival times an order of magnitude longer. These survival times are, in fact, lower limits in light of recent measurements by the Radiation Assessment Detector onboard the Mars Science Laboratory (Hassler et al., 2014), which found that the actual dose rate at Gale Crater (76 mGy year−1) is a factor of 2 lower than that modeled by Dartnell et al. (2007).”

The authors apologize for these errors and state that they do not change the scientific conclusions of the article in any way. The original article has been updated.

References

Airey, M. W., Mather, T. A., Pyle, D. M., and Ghail, R. C. (2017). The distribution of volcanism in the Beta-Atla-Themis region of Venus: its relationship to rifting and implications for global tectonic regimes. J. Geophys. Res. Planets 122, 1626–1649. doi: 10.1002/2016JE005205

CrossRef Full Text | Google Scholar

Baland, R. M., Tobie, G., Lefèvre, A., and Van Hoolst, T. (2014). Titan's internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41. doi: 10.1016/j.icarus.2014.04.007

CrossRef Full Text | Google Scholar

Basilevsky, A. T., and Head, J. W. (2003). The surface of Venus. Rep. Prog. Phys. 66, 1699–1734. doi: 10.1088/0034-4885/66/10/R04

CrossRef Full Text | Google Scholar

Bertaux, J.-L., Vandaele, A.-C., Korablev, O., Villard, E., Fedorova, A., Fussen, D., et al. (2007). A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646–649. doi: 10.1038/nature05974

PubMed Abstract | CrossRef Full Text | Google Scholar

Brassé, C., Buch, A., Coll, P., and Raulin, F. (2017). Low-temperature alkaline pH hydrolysis of oxygen-free Titan Tholins: carbonates' Impact. Astrobiology 17, 8–26. doi: 10.1089/ast.2016.1524

PubMed Abstract | CrossRef Full Text | Google Scholar

Cassidy, T. A., Paranicas, C. P., Shirley, J. H., Dalton, J. B., Teolis, B. D., Johnson, R. E., et al. (2013). Magnetospheric ion sputtering and water ice grain size at Europa. Planet. Space Sci. 77, 64–73. doi: 10.1016/j.pss.2012.07.008

CrossRef Full Text | Google Scholar

Castillo-Rogez, J., Neveu, M., McSween, H. Y., Fu, R. R., Toplis, M. J., and Prettyman, T. (2018). Insights into Ceres's evolution from surface composition. Meteorit. Planet. Sci. 53, 1820–1843. doi: 10.1111/maps.13181

CrossRef Full Text | Google Scholar

Chyba, C., and Phillips, C. (2001). Possible ecosystems and the search for life on Europa. Proc. Natl. Acad. Sci. U.S.A. 98, 801–804. doi: 10.1073/pnas.98.3.801

PubMed Abstract | CrossRef Full Text | Google Scholar

Cockell, C. S. (1999). Life on Venus. Planet. Space Sci. 47, 1487–1501. doi: 10.1016/S0032-0633(99)00036-7

CrossRef Full Text | Google Scholar

Cordier, D., Garciá-Sánchez, F., Justo-Garciá, D. N., and Liger-Belair, G. (2017). Bubble streams in Titan's seas as a product of liquid N2 + CH4 + C2H6 cryogenic mixture. Nat. Astron. 1:0102. doi: 10.1038/s41550-017-0102

CrossRef Full Text

Dalmasso, C., Oger, P., Selva, G., Courtine, D., L'Haridon, S., Garlaschelli, A., et al. (2016). Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise. Syst. Appl. Microbiol. 39, 440–444. doi: 10.1016/j.syapm.2016.08.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Dartnell, L. R., Desorgher, L., Ward, J. M., and Coates, A. J. (2007). Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys. Res. Lett. 34, 4–9. doi: 10.1029/2006GL027494

CrossRef Full Text | Google Scholar

de Kok, R., Irwin, P. G. J., Teanby, N. A., Lellouch, E., Bézard, B., Vinatier, S., et al. (2007). Oxygen compounds in Titan's stratosphere as observed by Cassini CIRS. Icarus 186, 354–363. doi: 10.1016/J.ICARUS.2006.09.016

CrossRef Full Text | Google Scholar

Fairén, A. G., Davila, A. F., Gago-Duport, L., Amils, R., and McKay, C. P. (2009). Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404. doi: 10.1038/nature07978

PubMed Abstract | CrossRef Full Text | Google Scholar

Fairén, A. G., Fern?ndez-Remolar, D., Dohm, J. M., Baker, V. R., and Amils, R. (2004). Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423–426. doi: 10.1038/nature02911

PubMed Abstract | CrossRef Full Text | Google Scholar

Fanale, F. P., and Salvail, J. R. (1989). The water regime of asteroid (1) Ceres. Icarus 82, 97–110. doi: 10.1016/0019-1035(89)90026-2

CrossRef Full Text | Google Scholar

Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A. J., Bar-Nun, A., Barucci, M. A., et al. (2005). In situ measurements of the physical characteristics of Titan's environment. Nature 438, 785–791. doi: 10.1038/nature04314

PubMed Abstract | CrossRef Full Text | Google Scholar

Gioia, G., Chakraborty, P., Marshak, S., and Kieffer, S. W. (2007). Unified model of tectonics and heat transport in a frigid Enceladus. Proc. Natl. Acad. Sci. U.S.A. 104, 13578–13581. doi: 10.1073/pnas.0706018104

PubMed Abstract | CrossRef Full Text | Google Scholar

Glein, C. R., Baross, J. A., and Waite, J. H. (2015). The pH of Enceladus' ocean. Geochim. Cosmochim. Acta 162, 202–219. doi: 10.1016/j.gca.2015.04.017

CrossRef Full Text | Google Scholar

Hand, K. P., and Carlson, R. W. (2015). Europa's surface color suggests an ocean rich with sodium chloride. Geophys. Res. Lett. 42, 3174–3178. doi: 10.1002/2015GL063559

CrossRef Full Text | Google Scholar

Hans Wedepohl, K. (1995). The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232. doi: 10.1016/0016-7037(95)00038-2

CrossRef Full Text | Google Scholar

Hassler, D. M., Zeitlin, C., Wimmer-schweingruber, R. F., Ehresmann, B., Rafkin, S., Eigenbrode, J. L., et al. (2014). Mars' surface radiation environment. Science 343:1244797. doi: 10.1126/science.1244797

PubMed Abstract | CrossRef Full Text | Google Scholar

Hayne, P. O., and Aharonson, O. (2015). Thermal stability of ice on Ceres with rough topography. J. Geophys. Res. E Planets 120, 1567–1584. doi: 10.1002/2015JE004887

CrossRef Full Text | Google Scholar

Hecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., et al. (2009). Detection of perchlorate and the soluble chemistry of Martian soil at the phoenix lander site. Science 325, 64–67. doi: 10.1126/science.1172466

PubMed Abstract | CrossRef Full Text | Google Scholar

Hendrix, A. R., Vilas, F., and Li, J. Y. (2016). Ceres: sulfur deposits and graphitized carbon. Geophys. Res. Lett. 43, 8920–8927. doi: 10.1002/2016GL070240

CrossRef Full Text | Google Scholar

Holm, N. G., Oze, C., Mousis, O., Waite, J. H., and Guilbert-Lepoutre, A. (2015). Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets). Astrobiology 15, 587–600. doi: 10.1089/ast.2014.1188

PubMed Abstract | CrossRef Full Text | Google Scholar

Hsu, H. W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horányi, M., et al. (2015). Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210. doi: 10.1038/nature14262

PubMed Abstract | CrossRef Full Text | Google Scholar

Javor, B. (1984). Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl. Environ. Microbiol. 48, 352–360.

PubMed Abstract | Google Scholar

Jennings, D. E., Cottini, V., Nixon, C. A., Achterberg, R. K., Flasar, F. M., Kunde, V. G., et al. (2016). Surface temperatures on Titan during northern winter and spring. Astrophys. J. 816:L17. doi: 10.3847/2041-8205/816/1/L17

CrossRef Full Text | Google Scholar

Johnson, A. P., Pratt, L. M., Vishnivetskaya, T., Pfiffner, S., Bryan, R. A., Dadachova, E., et al. (2011). Extended survival of several organisms and amino acids under simulated martian surface conditions. Icarus 211, 1162–1178. doi: 10.1016/j.icarus.2010.11.011

CrossRef Full Text | Google Scholar

Jones, E. G., Lineweaver, C. H., and Clarke, J. D. (2011). An extensive phase space for the potential martian biosphere. Astrobiology 11, 1017–1033. doi: 10.1089/ast.2011.0660

PubMed Abstract | CrossRef Full Text | Google Scholar

Jones, R. M., Goordial, J. M., and Orcutt, B. N. (2018). Low energy subsurface environments as extraterrestrial analogs. Front. Microbiol. 9:1605. doi: 10.3389/fmicb.2018.01605

PubMed Abstract | CrossRef Full Text | Google Scholar

Kargel, J. S., Kaye, J. Z., Head, J. W., Marion, G. M., Sassen, R., Crowley, J. K., et al. (2000). Europa?s crust and ocean: origin, composition, and the prospects for life. Icarus 148, 226–265. doi: 10.1006/ICAR.2000.6471

CrossRef Full Text | Google Scholar

Kattenhorn, S. A., and Prockter, L. M. (2014). Evidence for subduction in the ice shell of Europa. Nat. Geosci. 7, 762–767. doi: 10.1038/ngeo2245

CrossRef Full Text | Google Scholar

Kimura, J., and Kitadai, N. (2015). Polymerization of building blocks of life on Europa and other icy moons. Astrobiology 15, 430–441. doi: 10.1089/ast.2015.1306

PubMed Abstract | CrossRef Full Text | Google Scholar

Küppers, M., O'Rourke, L., Bockelée-Morvan, D., Zakharov, V., Lee, S., Von Allmen, P., et al. (2014). Localized sources of water vapour on the dwarf planet (1) Ceres. Nature 505, 525–527. doi: 10.1038/nature12918

PubMed Abstract | CrossRef Full Text | Google Scholar

Lang, N. P., and Hansen, V. L. (2006). Venusian channel formation as a subsurface process. J. Geophys. Res. E Planets 111:E04001. doi: 10.1029/2005JE002629

CrossRef Full Text | Google Scholar

Langmuir, D. (1971). The geochemistry of some carbonate ground waters in central Pennsylvania. Geochim. Cosmochim. Acta 35, 1023–1045. doi: 10.1016/0016-7037(71)90019-6

CrossRef Full Text | Google Scholar

Longstaff, A. (2014). Astrobiology: An Introduction. Boca Raton, FL: CRC Press. doi: 10.1201/b17880

CrossRef Full Text | Google Scholar

Marion, G. M., Kargel, J. S., Catling, D. C., and Jakubowski, S. D. (2005). Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa. Geochim. Cosmochim. Acta 69, 259–274. doi: 10.1016/j.gca.2004.06.024

CrossRef Full Text | Google Scholar

Martin, A., and McMinn, A. (2018). Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int. J. Astrobiol. 17, 1–16. doi: 10.1017/S1473550416000483

CrossRef Full Text | Google Scholar

Mastrogiuseppe, M., Poggiali, V., Hayes, A., Lorenz, R., Lunine, J., Picardi, G., et al. (2014). The bathymetry of a Titan sea. Geophys. Res. Lett. 41, 1432–1437. doi: 10.1002/2013GL058618

CrossRef Full Text | Google Scholar

McCord, T. B., and Castillo-Rogez, J. C. (2018). Ceres's internal evolution: The view after Dawn. Meteorit. Planet. Sci. 53, 1778–1792. doi: 10.1111/maps.13135

CrossRef Full Text | Google Scholar

McCord, T. B., and Sotin, C. (2005). Ceres: evolution and current state. J. Geophys. Res. E Planets 110:E5. doi: 10.1029/2004JE002244

CrossRef Full Text | Google Scholar

McCord, T. B., and Zambon, F. (2019). The surface composition of Ceres from the Dawn mission. Icarus 318, 2–13. doi: 10.1016/j.icarus.2018.03.004

CrossRef Full Text | Google Scholar

McDonough, W. F., and Sun, S. S. (1995). The composition of the Earth. Chem. Geol. 120, 223–253. doi: 10.1016/0009-2541(94)00140-4

CrossRef Full Text | Google Scholar

McGrath, M. A., Hansen, C. J., and Hendrix, A. R. (2009). “Observations of Europa's Tenuous Atmosphere,” in Europa, R. T. Pappalardo, W. B. McKinnon, and K. K. Khurana (Tucson, AZ: University of Arizona Press, 485–506.

Google Scholar

McKay, C. P. (2016). Titan as the Abode of Life. Life 6:8. doi: 10.3390/life6010008

PubMed Abstract | CrossRef Full Text | Google Scholar

Michalski, J. R., Cuadros, J., Niles, P. B., Parnell, J., Deanne Rogers, A., and Wright, S. P. (2013). Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 6, 133–138. doi: 10.1038/ngeo1706

CrossRef Full Text | Google Scholar

Millero, F. J., and Rabindra, N. R. (1997). A chemical equilibrium model for the carbonate system in natural waters. Croat. Chem. Acta 70, 1–38.

Google Scholar

Mitchell, J. L., and Lora, J. M. (2016). The climate of titan. Annu. Rev. Earth Planet. Sci. 44, 353–380. doi: 10.1146/annurev-earth-060115-012428

CrossRef Full Text | Google Scholar

Mitri, G., Meriggiola, R., Hayes, A., Lefevre, A., Tobie, G., Genova, A., et al. (2014). Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177. doi: 10.1016/j.icarus.2014.03.018

CrossRef Full Text | Google Scholar

Muñoz-Iglesias, V., Bonales, L. J., and Prieto-Ballesteros, O. (2013). pH and Salinity Evolution of Europa's Brines: Raman Spectroscopy Study of Fractional Precipitation at 1 and 300 Bar. Astrobiology 13, 693–702. doi: 10.1089/ast.2012.0900

PubMed Abstract | CrossRef Full Text | Google Scholar

Mykytczuk, N. C. S., Foote, S. J., Omelon, C. R., Southam, G., Greer, C. W., and Whyte, L. G. (2013). Bacterial growth at−15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 1211–1226. doi: 10.1038/ismej.2013.8

PubMed Abstract | CrossRef Full Text | Google Scholar

Mykytczuk, N. C. S., Wilhelm, R. C., and Whyte, L. G. (2012). Planococcus halocryophilus sp. nov., an extreme sub-zero species from high arctic permafrost. Int. J. Syst. Evol. Microbiol. 62, 1937–1944. doi: 10.1099/ijs.0.035782-0

PubMed Abstract | CrossRef Full Text | Google Scholar

NASA (2018). Mars Fact Sheet. Greenbelt, MD: NASA. Available at: https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html (accessed September 27, 2018).

Neveu, M., and Desch, S. J. (2015). Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophys. Res. Lett. 42, 10197–10206. doi: 10.1002/2015GL066375

CrossRef Full Text | Google Scholar

Nicholson, W. L., and Schuerger, A. C. (2005). Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated mars atmospheric pressure and composition: implications for planetary protection and Lithopanspermia. Astrobiology 5, 536–544. doi: 10.1089/ast.2005.5.536

PubMed Abstract | CrossRef Full Text | Google Scholar

Noell, A. C., Ely, T., Bolser, D. K., Darrach, H., Hodyss, R., Johnson, P. V., et al. (2015). Spectroscopy and Viability of Bacillus subtilis Spores after Ultraviolet Irradiation: Implications for the Detection of Potential Bacterial Life on Europa. Astrobiology 15, 20–31. doi: 10.1089/ast.2014.1169

PubMed Abstract | CrossRef Full Text | Google Scholar

Norman, L. H. (2011). Is there life on … Titan? Astron. Geophys. 52, 39–31. doi: 10.1111/j.1468-4004.2011.52139.x

CrossRef Full Text | Google Scholar

Oremland, R., Kulp, T., Blum, J., Hoeft, S., Baesman, S., Miller, L., et al. (2005). A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308, 1305–1308. doi: 10.1126/science.1110832

PubMed Abstract | CrossRef Full Text | Google Scholar

Pasek, M. A., and Greenberg, R. (2012). Acidification of Europa's Subsurface Ocean as a Consequence of Oxidant Delivery. Astrobiology 12, 151–159. doi: 10.1089/ast.2011.0666

PubMed Abstract | CrossRef Full Text | Google Scholar

Pavlov, A., Cheptsov, V., Tsurkov, D., Lomasov, V., Frolov, D., Vasiliev, G., et al. (2018). Survival of Radioresistant Bacteria on Europa's Surface after Pulse Ejection of Subsurface Ocean Water. Geosciences 9:9. doi: 10.3390/geosciences9010009

CrossRef Full Text | Google Scholar

Postberg, F., Kempf, S., Schmidt, J., Brilliantov, N., Beinsen, A., Abel, B., et al. (2009). Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101. doi: 10.1038/nature08046

PubMed Abstract | CrossRef Full Text | Google Scholar

Postberg, F., Khawaja, N., Abel, B., Choblet, G., Glein, C. R., Gudipati, M. S., et al. (2018). Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568. doi: 10.1038/s41586-018-0246-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., et al. (1995). Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 177, 7050–7059. doi: 10.1128/jb.177.24.7050-7059.1995

PubMed Abstract | CrossRef Full Text | Google Scholar

Schleper, C., Puhler, G., Klenk, H.-P., and Zillig, W. (1996). Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int. J. 46, 814–816. doi: 10.1099/00207713-46-3-814

CrossRef Full Text | Google Scholar

Schulze-Makuch, D., Grinspoon, D. H., Abbas, O., Irwin, L. N., and Bullock, M. A. (2004). A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere. Astrobiology 4, 11–18. doi: 10.1089/153110704773600203

PubMed Abstract | CrossRef Full Text | Google Scholar

Sinha, N., Nepal, S., Kral, T., and Kumar, P. (2017). Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: implications for deep subsurface life on Mars. Planet. Space Sci. 136, 15–24. doi: 10.1016/j.pss.2016.11.012

CrossRef Full Text | Google Scholar

Smith, D. J., Schuerger, A. C., Davidson, M. M., Pacala, S. W., Bakermans, C., and Onstott, T. C. (2009). Survivability of Psychrobacter cryohalolentis K5 under simulated martian surface conditions. Astrobiology 9, 221–228. doi: 10.1089/ast.2007.0231

PubMed Abstract | CrossRef Full Text | Google Scholar

Soderlund, K. M., Schmidt, B. E., Wicht, J., and Blankenship, D. D. (2014). Ocean-driven heating of Europa's icy shell at low latitudes. Nat. Geosci. 7, 16–19. doi: 10.1038/ngeo2021

CrossRef Full Text | Google Scholar

Sohl, F., Solomonidou, A., Wagner, F. W., Coustenis, A., Hussmann, H., and Schulze-Makuch, D. (2014). Structural and tidal models of Titan and inferences on cryovolcanism. J. Geophys. Res. Planets 119, 1013–1036. doi: 10.1002/2013JE004512

CrossRef Full Text | Google Scholar

Spencer, J. R., Tamppari, L. K., Martin, T. Z., and Travis, L. D. (1999). Temperatures on Europa from Galileo photopolarimeter-radiometer: nighttime thermal anomalies. Science 284, 1514–1516. doi: 10.1126/science.284.5419.1514

PubMed Abstract | CrossRef Full Text | Google Scholar

Suzuki, S., Kuenen, J. G., Schipper, K., Van Der Velde, S., Ishii, S., Wu, A., et al. (2014). Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat. Commun. 5:3900. doi: 10.1038/ncomms4900

PubMed Abstract | CrossRef Full Text | Google Scholar

Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., et al. (2008). Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. U.S.A. 105, 10949–10954. doi: 10.1073/pnas.0712334105

PubMed Abstract | CrossRef Full Text | Google Scholar

Taubner, R. S., Pappenreiter, P., Zwicker, J., Smrzka, D., Pruckner, C., Kolar, P., et al. (2018). Biological methane production under putative Enceladus-like conditions. Nat. Commun. 9:748. doi: 10.1038/s41467-018-02876-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Teolis, B. D., Wyrick, D. Y., Bouquet, A., Magee, B. A., and Waite, J. H. (2017). Plume and surface feature structure and compositional effects on Europa's global exosphere: preliminary Europa mission predictions. Icarus 284, 18–29. doi: 10.1016/j.icarus.2016.10.027

CrossRef Full Text | Google Scholar

Travis, B. J., Palguta, J., and Schubert, G. (2012). A whole-moon thermal history model of Europa: impact of hydrothermal circulation and salt transport. Icarus 218, 1006–1019. doi: 10.1016/j.icarus.2012.02.008

CrossRef Full Text | Google Scholar

Vance, S. D., Hand, K. P., and Pappalardo, R. T. (2016). Geophysical controls of chemical disequilibria in Europa. Geophys. Res. Lett. 43, 4871–4879. doi: 10.1002/2016GL068547.Received

CrossRef Full Text | Google Scholar

Varnes, E. S., Jakosky, B. M., and McCollom, T. M. (2003). Biological potential of Martian hydrothermal systems. Astrobiology 3, 407–414. doi: 10.1089/153110703769016479

PubMed Abstract | CrossRef Full Text | Google Scholar

Villarreal, M. N., Russell, C. T., Luhmann, J. G., Thompson, W. T., Prettyman, T. H., A'Hearn, M. F., et al. (2017). The dependence of the cerean exosphere on solar energetic particle events. Astrophys. J. 838:L8. doi: 10.3847/2041-8213/aa66cd

CrossRef Full Text | Google Scholar

Vu, T. H., Hodyss, R., Johnson, P. V., and Choukroun, M. (2017). Preferential formation of sodium salts from frozen sodium-ammonium-chloride-carbonate brines – Implications for Ceres' bright spots. Planet. Space Sci. 141, 73–77. doi: 10.1016/j.pss.2017.04.014

CrossRef Full Text | Google Scholar

Waite, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., et al. (2009). Liquid water on Enceladus from observations of ammonia and40Ar in the plume. Nature 460, 487–490. doi: 10.1038/nature08153

CrossRef Full Text | Google Scholar

Wayne, R. P. (2000). Chemistry of Atmospheres, 3rd Edn. Oxford: Clarendon Press.

Google Scholar

Wordsworth, R. (2016). The climate of early mars. Annu. Rev. Earth Planet. Sci. 44, 381–408. doi: 10.1146/annurev-earth-060115-012355

CrossRef Full Text | Google Scholar

Zhu, P., Manucharyan, G. E., Thompson, A. F., Goodman, J. C., and Vance, S. D. (2017). The influence of meridional ice transport on Europa's ocean stratification and heat content. Geophys. Res. Lett. 44, 5969–5977. doi: 10.1002/2017GL072996

CrossRef Full Text | Google Scholar

Zolotov, M. Y. (2009). On the composition and differentiation of Ceres. Icarus 204, 183–193. doi: 10.1016/j.icarus.2009.06.011

CrossRef Full Text | Google Scholar

Zolotov, M. Y. (2017). Aqueous origins of bright salt deposits on Ceres. Icarus 296, 289–304. doi: 10.1016/j.icarus.2017.06.018

CrossRef Full Text | Google Scholar

Zolotov, M. Y., and Kargel, J. S. (2009). “On the chemical composition of Europa's icy shell, ocean, and underlying rocks,” in Europa, eds R. T. Pappalardo, W. B. McKinnon, and K. Khurana (Tucson, AZ: University of Arizona Press), 431.

Zolotov, M. Y., Tobie, G., Postberg, F., Magee, B., Waite, J. H., and Esposito, L. (2011). Chemical and phase composition of Enceladus: insights from Cassini data. EPSC Abstracts 6:EPSC-DPS2011-1330. doi: 10.1029/2011GL047415

CrossRef Full Text | Google Scholar

Keywords: polyextremophiles, limits of life, astrobiology, habitability and astrobiology, extremophiles/extremophily, search for life

Citation: Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S and Giovannelli D (2019) Corrigendum: Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 10:1785. doi: 10.3389/fmicb.2019.01785

Received: 02 July 2019; Accepted: 18 July 2019;
Published: 13 August 2019.

Edited and reviewed by: Davide Zannoni, University of Bologna, Italy

Copyright © 2019 Merino, Aronson, Bojanova, Feyhl-Buska, Wong, Zhang and Giovannelli. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Donato Giovannelli, donato.giovannelli@unina.it