Impact Factor 4.259 | CiteScore 4.30
More on impact ›

Editorial ARTICLE

Front. Microbiol., 30 January 2020 | https://doi.org/10.3389/fmicb.2020.00056

Editorial: Microbial Hydrogen Metabolism

  • 1School of Biological Sciences, Monash University, Clayton, VIC, Australia
  • 2Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States

Editorial on the Research Topic
Microbial Hydrogen Metabolism

Among the most ancient and widespread metabolic traits of microbial life is the ability to interconvert molecular hydrogen (H2; Lane et al., 2010; Schwartz et al., 2013; Peters et al., 2015). Two classes of metalloenzymes, [FeFe]-hydrogenase and [NiFe]-hydrogenase, catalyze the reversible oxidation of H2 to electrons and protons (Volbeda et al., 1995; Peters et al., 1998); a third class of hydrogenase, termed [Fe]-hydrogenase or Hmd, catalyzes the reduction of the substrate methenyltetrahydromethanopterin with H2 (Shima et al., 2008). The three classes of enzyme differ structurally and are phylogenetically unrelated. As such, they represent profound examples of convergent evolution (Wu and Mandrand, 1993; Vignais and Billoud, 2007; Greening et al., 2016).

Approximately a third of sequenced microorganisms, spanning at least 70 microbial phyla, encode hydrogenases and are thus predicted to be capable of interconverting H2 (Peters et al., 2015; Greening et al., 2016). The earliest evolving hydrogenase enzymes harbor a [NiFe] co-factor and these are thought to have functioned oxidatively (Boyd et al., 2014; Weiss et al., 2016), with [FeFe]-hydrogenases thought to have emerged more recently (Mulder et al., 2010). Both [NiFe] and [FeFe]-hydrogenases have since diversified to function in aerobic and anaerobic, heterotrophic, and autotrophic, and chemotrophic and phototrophic metabolic backgrounds (Kovács et al., 2005; Tamagnini et al., 2007; Thauer et al., 2010; Schwartz et al., 2013; Koch et al., 2014; Schuchmann and Muller, 2014; Pinske and Sawers, 2016). Many bacteria and archaea oxidize H2 as a low potential electron donor, an activity typically (albeit not exclusively) attributed to various lineages of [NiFe]-hydrogenase enzymes. Various bacteria, archaea, and microbial eukaryotes also evolve H2 as a diffusible end product during fermentative metabolism through the activity of [FeFe]- or [NiFe]-hydrogenases (Horner et al., 2000; Kim and Kim, 2011; Marreiros et al., 2013; Schwartz et al., 2013; Pinske and Sawers, 2016). In many organisms, the ability to metabolize H2 is a facultative trait that is regulated through the expression and maturation of hydrogenases (Schwartz et al., 2013; Greening and Cook, 2014). In such taxa, H2 represents a substrate that organisms utilize to supplement their energy metabolism, thereby allowing for an expansion of their niche space in ecosystems where other sources of reductant are low or variable in supply (e.g., Amenabar et al., 2018).

The implications of H2 in ecosystem level processes is increasingly being realized in both environmental and biomedical settings. A wide range of ecosystems have now been described where H2 cycling supports the bulk of primary production and where it forms the basis by which species interact, leading to ecologically structured communities. Much of the research on H2 metabolism to date has focused on ecosystems where H2 is present at elevated concentrations due to biological activity (e.g., anoxic sediments, gastrointestinal tracts; Sørensen et al., 1981; Wolf et al., 2016; Greening et al., 2019; Kessler et al., 2019) or geological activity (e.g., hydrothermal vents, subsurface systems; Petersen et al., 2011; Brazelton et al., 2012; Telling et al., 2015; Dong et al., 2019; Lindsay et al., 2019). More recently, it has been recognized that atmospheric H2 can serve as source of reductant for aerobic soil microorganisms and that this can influence the composition of the atmosphere (Conrad, 1996; Constant et al., 2010; Ji et al., 2017; Cordero et al., 2019). In parallel, medical microbiologists have shown that H2 metabolism is critical for the virulence of numerous pathogens, including Helicobacter, Clostridia, and Enterobacteriaceae (Kaji et al., 1999; Olson and Maier, 2002; Maier et al., 2004, 2013).

This special issue, featuring 10 articles from 46 different authors, explores microbial H2 metabolism from the molecular to the ecosystem scale. In the area of anaerobic metabolism, there are articles exploring the metabolism of H2-metabolizing bacteria capable of sulfate reduction, acetogenesis, halorespiration, and fermentation. Two articles investigate H2 oxidation in sulfate-reducing bacteria using the model system Desulfovibrio vulgaris (Fauque et al., 1988; Caffrey et al., 2007). Smith et al. present a mathematical model of the growth and metabolism of this bacterium, whereas Löffler et al. investigate the kinetic isotope fractionation associated with its H2 oxidation activity. A comprehensive review led by Schuchmann et al. covers recent advances in understanding clostridial H2 metabolism; it details the discovery and characterization of multimeric electron-bifurcating [FeFe]-hydrogenases, including those associated with formate dehydrogenases (Schut and Adams, 2009; Schuchmann and Müller, 2012, 2013; Buckel and Thauer, 2018). Another article led by Dragomirova et al. focuses on heterologous expression of a [NiFe]-hydrogenase from dehalogenating Chloroflexi (Kublik et al., 2016; Hartwig et al., 2017), reporting another unexpected association with formate dehydrogenase activity. Pinske explores a third type of formate dehydrogenase-linked hydrogenase, namely the classical formate hydrogenlyase complex of Enterobacteriaceae (McDowall et al., 2014), and its association with two novel iron-sulfur proteins.

Several articles also investigate aerobic H2 metabolism. Islam et al. report two other novel iron-sulfur proteins in mycobacteria, demonstrating that they are essential for the activity of the two high-affinity hydrogenases described in this lineage (Greening et al., 2014). Carere et al. meanwhile, build on the recent discovery that verrucomicrobial methanotrophs are facultative mixotrophs (Carere et al., 2017; Mohammadi et al., 2017) by showing resource allocation of Methylacidiphilum varies depending on H2 availability. Three articles also explore H2 metabolism at the ecosystem level. Adam and Perner explore the diversity of aerobic and anaerobic H2 metabolism in deep-sea hydrothermal vent systems, whereas Meyer-Dombard et al. investigate the influence of H2 on biogeochemical cycling in serpentinizing springs in the Philippines. Teng et al. review the previously underexplored area of H2 metabolism in bioremediation, including in the reduction of organohalides, nitroaromatic compounds, and heavy metals (Chardin et al., 2003; Hong et al., 2008; Schubert et al., 2018).

In summary, this special Research Topic sheds light on the diverse role of H2 in microbial metabolism and uncovers novel enzymes and pathways that mediate this process. This body of work highlights the intricate linkages between H2 cycling and the cycling of various other compounds, including methane, formate, carbon dioxide, sulfate, and organohalides, among others. In turn, these findings pave way for future studies on the biochemistry, physiology, ecology, and industrial applications of microbial H2 metabolism.

Author Contributions

CG and EB drafted this editorial together and approve its submission.

Funding

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0020246 (EB).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to acknowledge all authors, peer reviewers, guest editors, and the Frontiers team for their support in developing this Research Topic. The salary of CG is covered by an Australian Research Council DECRA Fellowship (DE170100310) and a National Health & Medical Research Council EL2 Fellowship (APP1178715).

References

Amenabar, M. J., Colman, D. R., Poudel, S., Roden, E. E., and Boyd, E. S. (2018). Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile. Environ. Microbiol. 20, 2523–2537. doi: 10.1111/1462-2920.14270

PubMed Abstract | CrossRef Full Text | Google Scholar

Boyd, E. S., Schut, G., Adams, M. W. W., and Peters, J. W. (2014). Hydrogen metabolism and the evolution of respiration. Microbe 9, 361–367. doi: 10.1128/microbe.9.361.1

CrossRef Full Text | Google Scholar

Brazelton, W. J., Nelson, B., and Schrenk, M. O. (2012). Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front. Microbiol. 2:268. doi: 10.3389/fmicb.2011.00268

CrossRef Full Text | Google Scholar

Buckel, W., and Thauer, R. K. (2018). Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chem. Rev. 118, 3862–3886. doi: 10.1021/acs.chemrev.7b00707

PubMed Abstract | CrossRef Full Text | Google Scholar

Caffrey, S. M., Park, H.-S., Voordouw, J. K., He, Z., Zhou, J., and Voordouw, G. (2007). Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 189, 6159–6167. doi: 10.1128/JB.00747-07

PubMed Abstract | CrossRef Full Text | Google Scholar

Carere, C. R., Hards, K., Houghton, K. M., Power, J. F., McDonald, B., Collet, C., et al. (2017). Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 11, 2599–2610. doi: 10.1038/ismej.2017.112

PubMed Abstract | CrossRef Full Text | Google Scholar

Chardin, B., Giudici-Orticoni, M.-T., De Luca, G., Guigliarelli, B., and Bruschi, M. (2003). Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl. Microbiol. Biotechnol. 63, 315–321. doi: 10.1007/s00253-003-1390-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Conrad, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Mol. Biol. Rev. 60, 609–640. doi: 10.1128/MMBR.60.4.609-640.1996

PubMed Abstract | CrossRef Full Text | Google Scholar

Constant, P., Chowdhury, S. P., Pratscher, J., and Conrad, R. (2010). Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ. Microbiol. 12, 821–829. doi: 10.1111/j.1462-2920.2009.02130.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Cordero, P. R. F., Grinter, R., Hards, K., Cryle, M. J., Warr, C. G., Cook, G. M., et al. (2019). Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. J. Biol. Chem. 294, 18980–18991. doi: 10.1074/jbc.RA119.011076

PubMed Abstract | CrossRef Full Text | Google Scholar

Dong, X., Greening, C., Rattray, J. E., Chakraborty, A., Chuvochina, M., Mayumi, D., et al. (2019). Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat. Commun. 10:1816. doi: 10.1038/s41467-019-09747-0

PubMed Abstract | CrossRef Full Text | Google Scholar

Fauque, G., Peck, H. D., Moura, J. J. G., Huynh, B. H., Berlier, Y., DerVartanian, D. V, et al. (1988). The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol. Lett. 54, 299–344. doi: 10.1111/j.1574-6968.1988.tb02748.x

CrossRef Full Text | Google Scholar

Greening, C., Berney, M., Hards, K., Cook, G. M., and Conrad, R. (2014). A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc. Natl. Acad. Sci. U.S.A. 111, 4257–4261. doi: 10.1073/pnas.1320586111

PubMed Abstract | CrossRef Full Text | Google Scholar

Greening, C., Biswas, A., Carere, C. R., Jackson, C. J., Taylor, M. C., Stott, M. B., et al. (2016). Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777. doi: 10.1038/ismej.2015.153

PubMed Abstract | CrossRef Full Text | Google Scholar

Greening, C., and Cook, G. M. (2014). Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr. Opin. Microbiol. 18, 30–38. doi: 10.1016/j.mib.2014.02.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Greening, C., Geier, R., Wang, C., Woods, L. C., Morales, S. E., McDonald, M. J., et al. (2019). Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13, 2617–2632. doi: 10.1038/s41396-019-0464-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Hartwig, S., Dragomirova, N., Kublik, A., Türkowsky, D., von Bergen, M., Lechner, U., et al. (2017). A H2-oxidizing, 1, 2, 3-trichlorobenzene-reducing multienzyme complex isolated from the obligately organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1. Environ. Microbiol. Rep. 9, 618–625. doi: 10.1111/1758-2229.12560

PubMed Abstract | CrossRef Full Text | Google Scholar

Hong, Y.-G., Guo, J., and Sun, G.-P. (2008). Identification of an uptake hydrogenase for hydrogen-dependent dissimilatory azoreduction by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 80:517. doi: 10.1007/s00253-008-1597-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Horner, D. S., Foster, P. G., and Embley, T. M. (2000). Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 17, 1695–1709. doi: 10.1093/oxfordjournals.molbev.a026268

PubMed Abstract | CrossRef Full Text | Google Scholar

Ji, M., Greening, C., Vanwonterghem, I., Carere, C. R., Bay, S. K., Steen, J. A., et al. (2017). Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403. doi: 10.1038/nature25014

PubMed Abstract | CrossRef Full Text | Google Scholar

Kaji, M., Taniguchi, Y., Matsushita, O., Katayama, S., Miyata, S., Morita, S., et al. (1999). The hydA gene encoding the H2-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol. Lett. 181, 329–336. doi: 10.1111/j.1574-6968.1999.tb08863.x

CrossRef Full Text | Google Scholar

Kessler, A. J., Chen, Y.-J., Waite, D. W., Hutchinson, T., Koh, S., Popa, M. E., et al. (2019). Bacterial fermentation and respiration processes are uncoupled in permeable sediments. Nat. Microbiol. 4, 1014–1023. doi: 10.1038/s41564-019-0391-z

PubMed Abstract | CrossRef Full Text | Google Scholar

Kim, D.-H., and Kim, M.-S. (2011). Hydrogenases for biological hydrogen production. Bioresour. Technol. 102, 8423–8431. doi: 10.1016/j.biortech.2011.02.113

PubMed Abstract | CrossRef Full Text | Google Scholar

Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lucker, S., et al. (2014). Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 1052–1054. doi: 10.1126/science.1256985

PubMed Abstract | CrossRef Full Text | Google Scholar

Kovács, K. L., Kovács, Á. T., Maróti, G., Meszaros, L. S., Balogh, J., Latinovics, D., et al. (2005). The hydrogenases of Thiocapsa roseopersicina. Biochem. Soc. Trans. 33, 61–63. doi: 10.1042/BST0330061

PubMed Abstract | CrossRef Full Text | Google Scholar

Kublik, A., Deobald, D., Hartwig, S., Schiffmann, C. L., Andrades, A., von Bergen, M., et al. (2016). Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB 1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement. Environ. Microbiol. 18, 3044–3056. doi: 10.1111/1462-2920.13200

CrossRef Full Text | Google Scholar

Lane, N., Allen, J. F., and Martin, W. (2010). How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays 32, 271–280. doi: 10.1002/bies.200900131

PubMed Abstract | CrossRef Full Text | Google Scholar

Lindsay, M. R., Colman, D. R., Amenabar, M. J., Fristad, K. E., Fecteau, K. M., Debes, R. V, et al. (2019). Probing the geological source and biological fate of hydrogen in Yellowstone hot springs. Environ. Microbiol. 21, 3816–3830. doi: 10.1111/1462-2920.14730

PubMed Abstract | CrossRef Full Text | Google Scholar

Maier, L., Vyas, R., Cordova, C. D., Lindsay, H., Sebastian, T., Schmidt, B., et al. (2013). Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe 14, 641–651. doi: 10.1016/j.chom.2013.11.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Maier, R. J., Olczak, A., Maier, S., Soni, S., and Gunn, J. (2004). Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence. Infect. Immun. 72, 6294–6299. doi: 10.1128/IAI.72.11.6294-6299.2004

PubMed Abstract | CrossRef Full Text | Google Scholar

Marreiros, B. C., Batista, A. P., Duarte, A. M. S., and Pereira, M. M. (2013). A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. Biochim. Biophys. Acta 1827, 198–209. doi: 10.1016/j.bbabio.2012.09.012

PubMed Abstract | CrossRef Full Text | Google Scholar

McDowall, J. S., Murphy, B. J., Haumann, M., Palmer, T., Armstrong, F. A., and Sargent, F. (2014). Bacterial formate hydrogenlyase complex. Proc. Natl. Acad. Sci. U.S.A. 111, E3948–E3956. doi: 10.1073/pnas.1407927111

PubMed Abstract | CrossRef Full Text | Google Scholar

Mohammadi, S., Pol, A., van Alen, T. A., Jetten, M. S. M., and Op den Camp, H. J. M. (2017). Methylacidiphilum fumariolicum SolV, a thermoacidophilic “Knallgas” methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 11, 945–958. doi: 10.1038/ismej.2016.171

PubMed Abstract | CrossRef Full Text | Google Scholar

Mulder, D. M., Boyd, E. S., Sarma, R., Endrizzi, J. A., Lange, R., Broderick, J. B., et al. (2010). Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465, 248–252. doi: 10.1038/nature08993

PubMed Abstract | CrossRef Full Text | Google Scholar

Olson, J. W., and Maier, R. J. (2002). Molecular hydrogen as an energy source for Helicobacter pylori. Science 298, 1788–1790. doi: 10.1126/science.1077123

PubMed Abstract | CrossRef Full Text | Google Scholar

Peters, J. W., Lanzilotta, W. N., Lemon, B. J., and Seefeldt, L. C. (1998). X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science 282, 1853–1858. doi: 10.1126/science.282.5395.1853

PubMed Abstract | CrossRef Full Text | Google Scholar

Peters, J. W., Schut, G. J., Boyd, E. S., Mulder, D. W., Shepard, E. M., Broderick, J. B., et al. (2015). [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta 1853, 1350–1369. doi: 10.1016/j.bbamcr.2014.11.021

CrossRef Full Text | Google Scholar

Petersen, J. M., Zielinski, F. U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. (2011). Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476:176. doi: 10.1038/nature10325

PubMed Abstract | CrossRef Full Text | Google Scholar

Pinske, C., and Sawers, R. G. (2016). Anaerobic formate and hydrogen metabolism. EcoSal Plus 7. doi: 10.1128/ecosalplus.ESP-0011-2016

PubMed Abstract | CrossRef Full Text | Google Scholar

Schubert, T., Adrian, L., Sawers, R. G., and Diekert, G. (2018). Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiol. Ecol. 94:fiy035. doi: 10.1093/femsec/fiy035

PubMed Abstract | CrossRef Full Text | Google Scholar

Schuchmann, K., and Müller, V. (2012). A bacterial electron-bifurcating hydrogenase. J. Biol. Chem. 287, 31165–31171. doi: 10.1074/jbc.M112.395038

PubMed Abstract | CrossRef Full Text | Google Scholar

Schuchmann, K., and Müller, V. (2013). Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 342, 1382–1385. doi: 10.1126/science.1244758

PubMed Abstract | CrossRef Full Text | Google Scholar

Schuchmann, K., and Muller, V. (2014). Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821. doi: 10.1038/nrmicro3365

PubMed Abstract | CrossRef Full Text | Google Scholar

Schut, G. J., and Adams, M. W. W. (2009). The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191, 4451–4457. doi: 10.1128/JB.01582-08

PubMed Abstract | CrossRef Full Text | Google Scholar

Schwartz, E., Fritsch, J., and Friedrich, B. (2013). H2-Metabolizing Prokaryotes. eds E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson Berlin; Heidelberg: Springer Berlin Heidelberg.

Google Scholar

Shima, S., Pilak, O., Vogt, S., Schick, M., Stagni, M. S., Meyer-Klaucke, W., et al. (2008). The crystal structure of [Fe]-Hydrogenase reveals the geometry of the active site. Science 321, 572–575. doi: 10.1126/science.1158978

PubMed Abstract | CrossRef Full Text | Google Scholar

Sørensen, J., Christensen, D., and Jørgensen, B. B. (1981). Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42, 5–11. doi: 10.1128/AEM.42.1.5-11.1981

PubMed Abstract | CrossRef Full Text | Google Scholar

Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D. J., et al. (2007). Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol. Rev. 31, 692–720. doi: 10.1111/j.1574-6976.2007.00085.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Telling, J., Boyd, E. S., Bone, N., Jones, E. L., Tranter, M., MacFarlane, J. W., et al. (2015). Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 8, 851–857. doi: 10.1038/ngeo2533

CrossRef Full Text | Google Scholar

Thauer, R. K., Kaster, A.-K., Goenrich, M., Schick, M., Hiromoto, T., and Shima, S. (2010). Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu. Rev. Biochem. 79, 507–536. doi: 10.1146/annurev.biochem.030508.152103

PubMed Abstract | CrossRef Full Text | Google Scholar

Vignais, P. M., and Billoud, B. (2007). Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272. doi: 10.1021/cr050196r

PubMed Abstract | CrossRef Full Text | Google Scholar

Volbeda, A., Charon, M. H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla-Camps, J. C. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580–587. doi: 10.1038/373580a0

PubMed Abstract | CrossRef Full Text | Google Scholar

Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., et al. (2016). The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1:16116. doi: 10.1038/nmicrobiol.2016.116

PubMed Abstract | CrossRef Full Text | Google Scholar

Wolf, P. G., Biswas, A., Morales, S. E., Greening, C., and Gaskins, H. R. (2016). H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 7, 235–245. doi: 10.1080/19490976.2016.1182288

PubMed Abstract | CrossRef Full Text | Google Scholar

Wu, L. F., and Mandrand, M. A. (1993). Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol. Rev. 10, 243–269. doi: 10.1111/j.1574-6968.1993.tb05870.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: hydrogen, hydrogen metabolism, hydrogenase, fermentation, respiration

Citation: Greening C and Boyd E (2020) Editorial: Microbial Hydrogen Metabolism. Front. Microbiol. 11:56. doi: 10.3389/fmicb.2020.00056

Received: 20 November 2019; Accepted: 13 January 2020;
Published: 30 January 2020.

Edited by:

Patricia Coutinho Dos Santos, Wake Forest University, United States

Reviewed by:

Shawn E. McGlynn, Tokyo Institute of Technology, Japan

Copyright © 2020 Greening and Boyd. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Chris Greening, chris.greening@monash.edu; Eric Boyd, eboyd@montana.edu