ORIGINAL RESEARCH article

Front. Bioeng. Biotechnol.

Sec. Biomechanics

Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1579085

Estimating Within-Stride Metabolic Cost from Stride-Average Data Using Autoencoders and Expander Networks

Provisionally accepted
  • 1University of Nebraska-Lincoln, Lincoln, Nebraska, United States
  • 2Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
  • 3University of Nebraska Omaha, Omaha, Nebraska, United States
  • 4Georgia Institute of Technology, Atlanta, United States

The final, formatted version of the article will be published soon.

Biomechanical changes due to aging increase the oxygen consumption of walking by over 30%. When this is coupled with reduced oxygen uptake capacity, the ability to sustain walking becomes compromised. This reduced physical activity and mobility can lead to further physical degeneration and mortality. Unfortunately, the underlying reasons for the increased metabolic cost are still inadequately understood. While motion capture systems can measure signals with high temporal resolution, it is impossible to directly characterize the fluctuation of metabolic cost throughout the gait cycle. To address this issue, this research focuses on computing the metabolic cost time series from the mean value using two neural-network-based approaches: autoencoders (AEs) and expanders. For the AEs, the encoders are designed to compress the input time series down to their mean value, and the decoder expands those values into the time series. After training, the decoder is extracted and applied to mean metabolic cost values to compute the time series. A second approach leverages an expander to map the mean values to the time series without an encoder. The networks are trained using ten different metabolic cost models generated by a computational walking model that simulates the gait cycle subjected to 35 different robotic perturbations without using experimental input data. The networks are validated using the estimated metabolic costs for the unperturbed gait cycle. The investigation found that AEs without tied weights and the expanders performed best using nonlinear activation functions, while the AEs with tied weights performed best with linear activation functions. Unexpectedly, the results show that the expanders outperform the AEs. A limitation of this research is the reliance on time series for the initial training. Future efforts will focus on developing methods that overcome this issue. Improved methods for estimating within-stride fluctuations in metabolic cost have the potential of improving rehabilitation and assistive devices by targeting the gait phases with increased metabolic cost. This research could also be applied to expand sparse measurements to locations or times that were not measured explicitly. This application would reduce the number of measurement points required to capture the response of a system.

Keywords: Walking, Biomechanics, energetics, machine learning, system identification

Received: 18 Feb 2025; Accepted: 12 May 2025.

Copyright: © 2025 Mustafa, Dzewaltowski, Malcolm and Moore. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Keegan Moore, Georgia Institute of Technology, Atlanta, United States

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.