ORIGINAL RESEARCH article
Front. Bioeng. Biotechnol.
Sec. Biomaterials
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1579246
This article is part of the Research TopicAdvances in Polymer-Based Biomaterials for Tissue Engineering and Regenerative MedicineView all 3 articles
Tunable Methacrylated Decellularized Heart Matrix: A Versatile Scaffold for Cardiac Tissue Engineering
Provisionally accepted- 1Case Western Reserve University, Cleveland, United States
- 2Cleveland State University, Cleveland, Ohio, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Therapeutic tissue regeneration remains a significant unmet need in heart failure and cardiovascular disease treatment, which are among the leading causes of death globally. Decellularized heart matrix (DHM) offer promising advantages for tissue engineering, including low immunogenicity and seamless integration into biological processes, facilitating biocompatibility. However, DHM is challenged by weak mechanical properties that limit its utility to biomedical applications like tissue engineering. To address this limitation, we functionalized DHM with methacryloyl functional groups (DHMMA) that support UV-induced crosslinking to enhance mechanical properties. By modulating the degree of methacryloyl substitution, a broad range of stiffness was achieved while maintaining cell viability on crosslinked DHMMA. Additionally, we show that increasing UV exposure time and pH increases DHMMA stiffness. Furthermore, topographical features transferred on DHMMA via soft lithography facilitated physical orientation of cells in culture. We demonstrate DHMMA as a scaffold with tunable stiffness and matrix-degradation properties suitable for cell survival and microfabrication for cardiac tissue engineering applications.
Keywords: decellularized heart matrix, Biomaterials, ultra-violet crosslinking, Methacrylation, protein release
Received: 18 Feb 2025; Accepted: 12 May 2025.
Copyright: © 2025 Pierre, Wu, Liu, Ertugral, Kothapalli and Senyo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Samuel E Senyo, Case Western Reserve University, Cleveland, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.