REVIEW article
Front. Bioeng. Biotechnol.
Sec. Nanobiotechnology
Volume 13 - 2025 | doi: 10.3389/fbioe.2025.1606573
This article is part of the Research Topic3D Models in Cancer Research: Bridging Tumor Biology and Personalized MedicineView all 10 articles
Harnessing 3D cell models and high-resolution imaging to unveil the mechanisms of nanoparticle-mediated drug delivery
Provisionally accepted- University College Dublin, Dublin, Ireland
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Nanoparticles and nanosized materials offer huge potential in the field of drug delivery. One key aspect that dictates their successful development is the need to understand how they interact with cells at both the macro and molecular level. Delineating such interactions is vital if nanomaterials are to be targeted not only to particular organs and tissues, but also to individual cell types and ultimately specific subcellular locations. In this regard, the development of appropriate in vitro cell models is an essential prerequisite before animal and human trials. In recent years, as the methodology for their growth has been refined, there has been a huge expansion in the use of pre-clinical 3D cell culture models, particularly spheroids and organoids. These models are attractive because they can be combined with high-resolution fluorescence imaging to provide real-time information on how nanomaterials interact with cells. Confocal fluorescence microscopy and its associated modalities, along with high-content screening and analysis, are powerful techniques that allow researchers the possibility of extracting spatial and temporal information at multiple levels from cells and entire 3D assemblies. In this review, we summarise the state of this field, paying particular emphasis to how imaging of such models is now beginning to provide rich quantitative data about nanomaterial entry and trafficking in cells growing in 3D. We also offer a perspective on the challenges faced by such approaches, and the important questions that the drug delivery field still needs to address.
Keywords: Nanoparticles, Drug delivery, spheroids, Organoids, 3D cell models, fluorescence microscopy, High-content analysis
Received: 10 Apr 2025; Accepted: 19 Jun 2025.
Copyright: © 2025 Chalkley, Lopez, Mysior, Brink, Kelly and Simpson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jeremy C Simpson, University College Dublin, Dublin, Ireland
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.