REVIEW article
Front. Cell Dev. Biol.
Sec. Signaling
Volume 13 - 2025 | doi: 10.3389/fcell.2025.1587089
DYRK1A in blood and immune function: implications in leukemia, inflammatory disorders, infection and Down syndrome
Provisionally accepted- 1Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
- 2Depratment of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Down syndrome (DS) is the most frequent autosomal aneuploidy, and it arises due to an extra copy of human chromosome 21. Individuals with trisomy 21 (T21) exhibit an increased predisposition towards a wide number of developmental and physiological alterations, often referred to as DS co-occurring conditions, including congenital heart disease, leukemia, intellectual disability, neurodegenerative disorders or autoimmune diseases, among many others. The overexpression of several genes encoded on chromosome 21 have been linked to many of such T21-associated disorders, but we are still very far from grasping a full picture of the contributions and interconnections of such genes in the pathophysiology of DS.DYRK1A is a versatile and ubiquitous kinase encoded on human chromosome 21, and as such, its activity has been linked to many alterations that characterize DS. Although most of the attention has been focused on DYRK1A’s roles in neural development, function and degeneration, accumulating reports are expanding the scope towards other tissues and conditions where this kinase also performs critical functions, such as the cardiovascular system, diabetes, inflammation and immune homeostasis.Here, we present a detailed review of the literature summarizing all the information linking DYRK1A to blood and immune function, as well as leukemia, inflammation and viral infections, with a special focus on their potential associations to T21. This article synthesizes evidence that supports several novel hypotheses on previously unsuspected roles for DYRK1A in specific DS alterations, opening new pathways for the research community to explore and therefore, contributing to future innovative diagnostic or therapeutic interventions. This article will hopefully inspire and guide the advancement of our knowledge leading to much needed treatments for individuals with Down syndrome, but also for the general population.
Keywords: trisomy 21, Down Syndrome, DYRK1A, Blood and immune function, Leukemia, Inflammation, viral infection
Received: 28 Mar 2025; Accepted: 07 May 2025.
Copyright: © 2025 Rozen, Dowell and Allen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Esteban J Rozen, Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
Mary Ann Allen, Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.