REVIEW article
Front. Cell Dev. Biol.
Sec. Molecular and Cellular Pathology
Volume 13 - 2025 | doi: 10.3389/fcell.2025.1593122
This article is part of the Research TopicProtein Aggregation, Amyloidogenesis and Cross Beta Structures; A Risk Factor for Chronic Diseases or a State of Cellular BenefitView all articles
"Proteinjury": a Universal Pathological Mechanism Mediated by Cerebrospinal Fluid in Neurodegeneration and Trauma
Provisionally accepted- Institute of Cytology, Russian Academy of Sciences (RAS), Saint Petersburg, Russia
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Cerebrospinal fluid (CSF) is a vital body fluid that supports the normal physiological functions of the brain and spinal cord. However, pathological conditions associated with injuries and neurodegenerative diseases lead to the accumulation of peptides, proteins, and their oligomers or aggregated forms in the CSF. In such cases, the CSF serves as a carrier and distributor of these pathogenic structures, facilitating secondary damage through the cytotoxic effects of protein aggregates. To describe this phenomenon, we introduce the term "proteinjury". To date, accumulating experimental evidence has identified key protein complexes that contribute to proteinjury, particularly in the context of neurodegenerative diseases, traumatic brain injuries, ischemic strokes and others commonly associated with cell death and the appearance of formerly cytoplasmic proteins in the extracellular milieu. This review explores the mechanisms underlying the formation of pathogenic protein complexes in CSF, the diagnostic potential of CSF protein biomarkers, and the prospects for rehabilitation therapies aimed at preventing secondary damage mediated by pathogenic protein structures in CSF. Based on the findings discussed in this review, we conclude that proteinjury represents a universal and critical mechanism in the progression of various neurodegenerative disorders, and a deeper understanding of this phenomenon may provide new insights for the development of targeted interventions to improve clinical outcomes.
Keywords: neurodegeneration, protein aggregates, stress, Cerebrospinal Fluid, Toxicity
Received: 13 Mar 2025; Accepted: 29 Apr 2025.
Copyright: © 2025 Lazarev, Alhasan, Guzhova and Margulis. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Vladimir F Lazarev, Institute of Cytology, Russian Academy of Sciences (RAS), Saint Petersburg, Russia
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.