REVIEW article
Front. Cell Dev. Biol.
Sec. Molecular and Cellular Pathology
Volume 13 - 2025 | doi: 10.3389/fcell.2025.1600430
Liquid-liquid phase separation of membrane-less condensates: from biogenesis to function
Provisionally accepted- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Membrane-less condensates (MLCs) are highly concentrated non-membrane-bounded structures in mammalian cells, comprising heterogeneous mixtures of proteins and/or nucleic acids. As dynamic compartments, MLCs can rapidly exchange components with the cellular environment, and their properties are easily altered in response to environmental signals, thus implicating that they can mediate numerous critical biological functions. A basic understanding of these condensates' formation, function, and underlying biomolecular driving forces has been obtained in recent years. For example, MLCs form through a liquid-liquid phase separation (LLPS) phenomenon similar to polymer condensation, which is primarily maintained via multivalent interactions of multi-domain proteins or proteins harboring intrinsically disordered regions (IDRs) as well as RNAs with binding sites. Moreover, an accumulating body of research indicates that MLCs are pathophysiologically relevant and involved in gene expression regulation and cellular stress responses. Here, we review the emerging field and explore what is currently known about the varied progress in LLPS of MLCs and how their features affect various cellular process, focusing on RNAs, including in skeletal myogenesis.
Keywords: MLC, LLPS, IDR, lncRNA, Skeletal myogenesis
Received: 26 Mar 2025; Accepted: 30 Apr 2025.
Copyright: © 2025 Yue, Guan, Wang, Cai, Wang, Chai, Wang, Wang, Zhang, Wu, Zhu and Zhong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Binglin Yue, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.